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Abstract

This text describes the Fourier method with FFT and its implemen-
tation for the BENCHOP-project.

1 Introduction

It was shown in the seminal Heston paper on stochastic volatility Heston [1993]
that the option value could be computed by inverting to Fourier integrals. This
meant that the computational demands was far less than using either Monte
Carlo methods, binomial or trinomial tree, see Cox et al. [1979] or PDE methods,
explaining the popularity of the model.

2 Carr-Madan method

We focus on a more recent implementation in these notes, namely the Carr-
Madan algorithm, see Carr and Madan [1999].

Assume that the characteristic function of the log price s(T ) = logS(T ) is
known

ψ(u) = E
[
eius(T )

]
=

∫
eiusdQ(s). (1)

The risk neutral measure is absolutely continuous with respect to the Lebesgue
measure in virtually every models we consider in this book, and we will therefore
assume that we can use the density instead dQ(s) = q(s)ds.

It is known from Section ?? that the price of a European Call option is given
by

C(k) =

∫ ∞
k

e−rT (es − ek)q(s)ds (2)

where k = log(K) is the log strike price. The option price is not square integrable
(which is required by the Parseval’s theorem) but a modified version of the price
is

c(k) = eαkC(k) (3)
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where α is some positive number. It is then possible to compute the Fourier
transform of modified price c(k) as

φ(v) =

∫
eivkc(k)dk. (4)

This expression can be extend further accordingly

φ(v) =

∫
eivkc(k)dk (5)

=

∫
eivkeαk

∫ ∞
k

e−rT (es − ek)q(s)dsdk (6)

=
e−rTψ(v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
. (7)

It is also possible to compute the option price by applying the inverse Fourier
transform to (4)

C(k) =
e−αk

2π

∫
e−ivkφ(v)dv =

e−αk

π

∫ ∞
0

e−ivkφ(v)dv.. (8)

where the second equality holds as C(k) is real. Hence, call prices as given by
inserting equation (7) into (8) arriving at

C(k) =
e−αk

π

∫ ∞
0

e−ivk
e−rTψ(v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
dv. (9)

The integral can be computed using either Fast Fourier Transform (FFT)
or related fast transforms, see Hirsa [2013] or Gauss-Laguerre quadrature meth-
ods Lindström et al. [2008] as both types of methods provides very accurate
approximations with very limited computational efforts

C(k) =
e−αk

π

N∑
j=1

e−ivjkφ(vj)ωj . (10)

where ωj depends on the numerical quadrature method used and vj = (j− 1)η,
j = 1, . . . , N + 1.

The modification, here parametrized by α, is needed due to Parseval, but
it can also be seen that choosing α = 0 would introduce a singularity in (9).
It can also be shown that the α parameter can dampen numerical oscillations
in the integrand, leading to better numerical approximations, see Lee [2004],
Lindström et al. [2008] for further details.

2.1 Implementation with the FFT algorithm

The Fat Fourier Transform (FFT) algorithm, see Cooley and Tukey [1965], is an
implementation of the Discrete Fourier Transform (DFT) with the distinct ad-
vantage that the computational complexity is O(N log(N)) rather than O(N2).
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It computes

X(m) =

N∑
j=1

xje
−i 2πN (j−1)(m−1), j = 0, . . . , N − 1. (11)

The FFT algorithm can be used to compute Equation (10) if it can fit this form.
Doing so will not only compute the option price at a single value but for a whole
range of values.

First we create a range of (log-) strikes km = log(S0)− ∆kN
2 + (m− 1)∆k =

β+ (m− 1)∆k for m = 1, . . . , N which should cover all relevant strike and then
some.

We now get that

C(km) =
e−αkm

π

N∑
j=1

e−ivjkmφ(vj)ωj (12)

=
e−αkm

π

N∑
j=1

e−i(j−1)η(β+(m−1)∆k)φ(vj)ωj (13)

=
e−αkm

π

N∑
j=1

e−i(j−1)(m−1)η∆ke−iβvjφ(vj)ωj (14)

Choosing η∆K = 2π and defining xj = e−iβvjφ(vj)ωj transforms the prob-
lem so that the FFT algorithm can be applied.
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