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Abstract

This text describes the radial basis function partition of unity method
(RBF–PUM) and its implementation for the BENCHOP-project.

All problems considered in the BENCHOP-project can be represented as

∂V

∂t
− LV = 0, x ∈ Ω, t ∈ (0, T ] , (0.1)

where V is the value of the option, s = (s1, . . . , sd) defines the spot prices of the d
underlying assets, t is the backward time, i.e., time to maturity, T is the maturity
time of the option, and Ω ⊂ Rd.

For example for the European option on one underlying asset under the Black-
Scholes model the spatial operator L takes form

L =
1

2
σ2s2

∂2

∂s2
+ rs

∂

∂x
− r, (0.2)

where σ is the volatility and r is the risk-free interest rate. For other models it has
a similar form.

1 Radial basis function method

An RBF approximation of function u on N scattered nodes x1, . . . , xN ∈ Ω ⊂ Rd

reads as

Ju(x) =
N∑
j=1

λjφ(‖x− xj‖), x ∈ Ω, (1.1)
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where λj is an unknown coefficient, ‖ · ‖ is the Euclidian norm and φ(r) is a real-
valued radial basis function. In order to determine λj, j = 1, . . . , N , we enforce the
interpolation conditions Ju(xj) = u(xj) and as a result we obtain a linear system

Aλ = u, (1.2)

where Aij = φ(‖xi − xj‖), λ = [λ1, . . . , λN ]T , u = [u(x1), . . . , u(xN)]T .
If the approximated function is time dependent, we let λj be time-dependent,

such that

Ju(x, t) =
N∑
j=1

λj(t)φ(‖x− xj‖), x ∈ Ω, t ≥ 0. (1.3)

1.1 RBF partition of unity methods

The idea of the radial basis function partition of unity method (RBF–PUM) is to
split the domain Ω into M overlapping partitions and construct a local interpolant
in each subdomain. This allows to significantly sparsify the linear system.

We define a partition of unity {wi}Mi=1, subordinated to the open cover {Ωi}Mi=1 of Ω,
i.e., Ω ⊆

⋃M
i=1 Ωi, such that

M∑
i=1

wi(x) = 1, x ∈ Ω. (1.4)

Now, for each subdomain we construct a local RBF interpolant J i
u, and then

form the global interpolant for the entire domain Ω:

Ju(x) =
M∑
i=1

wi(x)J i
u(x) =

M∑
i=1

wi(x)

Ni∑
j=1

λijφ(‖x− xij‖), x ∈ Ω. (1.5)

The partition of unity functions wi can be constructed in the following way

wi(x) =
ϕi(x)∑M
k=1 ϕk(x)

, i = 1, . . . ,M, (1.6)

where ϕi(x) is a C2 compactly supported on Ωi Wendland function

ϕ(r) =

{
(1− r)4(4r + 1), if 0 ≤ r ≤ 1

0, if r > 1.
(1.7)
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Each Ωi is chosen as a circular patch. Therefore, each Wendland function will be
scaled as

ϕi(x) = ϕ

(
‖x− ci‖

ri

)
, i = 1, . . . ,M, (1.8)

where ri is the radius of the patch Ωi and ci is its center point.

2 Time discretisation

For the time discretisation we use a modified version of the backward differential
formula of the second order (BDF-2), which requires just one LU-factorisation.

We divide the time interval [0, T ] into Nt steps of length kn = tn − tn−1, n =
1, . . . , Nt. The BDF-2 scheme then has the form

(E − βn
0L)V 1

I = V 0
I , (2.1)

(E − βn
0L)V n

I = βn
1 V

n−1
I − βn

2 V
n−2
I , n = 2, . . . , Nt, (2.2)

where V n
I is the solution in the interior, L is the discretised spatial operator, and E

is an identity operator and

βn
0 = kn

1 + ωn

1 + 2ωn

, βn
1 =

(1 + ωn)2

1 + 2ωn

, βn
2 =

ω2
n

1 + 2ωn

, (2.3)

where ωn = kn/kn−1, n = 2, . . . , Nt.

2.1 Boundary treatment

We enforce the following boundary conditions

V n
B = fn

B, n = 1, . . . , Nt, (2.4)

where fn
B is the asymptotic solution.

Thus, the linear system becomes(
EI − β0LII −β0LIB

0 EB

)(
V n
I

V n
B

)
=

(
fn
I

fn
B

)
, (2.5)

where
fn
I = βn

1 V
n−1
I − βn

2 V
n−2
I . (2.6)
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3 American options

We solve American option problems by a penalty approach, which allows us to remove
the free boundary and solve the problem on a fixed domain. The used penalty
function is

P =
erK

V + e− q
, (3.1)

where e is the penalty parameter, r is the risk-free interest rate, K is the strike price,
V is the option price, and q = K − s. This penalty is non-linear and in order to
avoid non-linear iterations we treat the penalty explicitly. It will result into the same
linear system as (2.5), but

fn
I = βn

1 V
n−1
I − βn

2 V
n−2
I − βn

0P (V n−1
I ). (3.2)

The explicit treatment of the penalty function will put a limit on the time step size

∆t ≤ e

rK
. (3.3)

4 Implementation delails

The type of RBFs used for all experiments is multiquadric φ(r) =
√

1 + ε2r2. The
discretisation parameters for each test problem can be found in the attached sourse
code files. The only thing which is worth to mention here is for some problems
we used meshes with points clustered around the strike price. This allowed for an
essential increase in the accuracy. The information about used grids and amount of
their clustering can be as well found in the code files.
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