
Notes on the BENCHOP implementation for the

adaptive radial basis function with the backward

Crank Nicolson method in time

Juxi Li(jl164@le.ac.uk) and
Jeremy Levesley(jl1@le.ac.uk)

March 16, 2015

Abstract

This text describes the adaptive radial basis function with backward
Crank Nicolson in time method and its implementation for the BENCHOP-
project.

1 Spatial discretization and time-stepping scheme

The one dimensional non-dividend payment Black-Scholes equation is

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, (1)

where S is the underlying asset value which follows a random walk in continuous
time, σ is a constant volatility, r is a known and constant short-term interest
rate and V is the price of option. This equation can be rearranged as follows:

∂u

∂t
+ Lu = 0, t ∈ [0, T]. (2)

L is our partial differential operator in one or two space dimensions. We will
describe our adaptive radial basis function in one dimension problem and use
the method of lines to transform the partial differential equation (PDE) to a
system of ordinary differential equations (ODEs).

For a given a set of collocation points x1, . . . , xN(t) ∈ R and RBF φ, we
construct an approximation to u

uN (x, t) =

N(t)∑
i=1

λ(t)φ(‖x− xi(t)‖).

The N and xi change because we are using adaptive techniques. Substituting
this into the PDE above we obtain a system of ODEs which can be written in

1

terms of the N ×N matrices A = φ(| x− xj(t) |)1≤j≤N(t), Ax = φ′(| x− xj(t) |
)1≤j≤N(t) and Axx = φ′′(| x−xj(t) |)1≤j≤N(t). Because of the adaptive method
we use, thus the matrices of A, Ax and Axx are depending on time t. However,
for notational simplicity in below, we should write A = At, Ax = Atx and
Axx = Atxx. Our ODE system at each time step is

Aλt = −
[

1

2
σ2Axxλ+

(
r − 1

2
σ2

)
Axλ− rAλ

]
. (3)

We cannot in principle guarantee the invertibility of the linear systems aris-
ing in the method, but we have never obtained a system with zero determinant,
even though small eigenvalues arise if we choose small smooth radial basis func-
tions such as Gaussians or multiquadrics for φ. Premulitiplication by A gives

λt = −
[

1

2
σ2A−1Axx +

(
r − 1

2
σ2

)
A−1Ax − rI

]
λ. (4)

We can rewrite this as

λt = Pλ,
where P = − 1

2σ
2A−1Axx − (r − 1

2σ
2)A−1Ax + rI.

(5)

Now, any backward time integration schemes can be applied to find the unknown
coefficient vector λ. We will use the backward Crank Nicolson scheme for our
time integration:

λt − λt−∆t

∆t
=

1

2
P (λt + λt−∆t), 0 < t ≤ T. (6)

If we rearrange the terms above we will have

(I − 1

2
∆tP)λt =

(
I +

1

2
∆tP

)
λt−∆t. (7)

By defining the follow new matrices L and R:

L = (I − 1
2∆tP),

R = (I + 1
2∆tP),

(8)

then we have a simple linear system of equations:

Lλt = Rλt−∆t,
λt = L−1Rλt−∆t,

(9)

0 < t ≤ T with increment of time ∆t. We note that good approximation of the
initial condition is really important, where the function we are approximating
has a derivative singularity. We use adaptive approximation to cluster nodes
near to points where the function is least smooth. As time evolves, the solution
smooths and we need less points to gain the same approximation quality.

2

2 Adaptive algorithm

In the one dimensional problem, the approximation of U is obtained by global
radial basis function, using the multiquadric basis function, which we evaluate by
comparison with a local approximation using piecewise cubic spline interpolation
at the 8 points nearest to xi, 2 ≤ i ≤ N − 1. A good approximation is defined
by an error threshold in the residual which is based on predefined thresholds
errref and errcrs, and residual is rerr =| uN (xi)− ũNxi

(xi) |, where Nxi denotes
the 8 nearest points, not including xi, and ũNxi

is the local approximation to
uN based on these points.

Let errref and errcrs be thresholds for refining points and coarsening points
respectively. The refinement and coarsening strategy can be summarized as fol-
lows:

For a given set of interpolation points x1, . . . , xN , we will not reconstruct two
end points (first and last interpolation points)

1. • For each xi, determine Nxi
;

• Compute ũNxi
, the local interpolant using cubic splines;

• Compute rerr =| uN (xi)− ũNxi
(xi) |.

2. Refine if rerr > errref .

3. Coarsen if rerr < errcrs.

3 Benchmark problem 1

• We truncate the computational domain, log(Smin) ≤ log(S) ≤ log(Smax).
The initial condition and boundary condition is

u(x, T) = max{ex −K, 0},
u(log(Smin), t) = α(t), 0 ≤ t ≤ T,
u(log(Smax), t) = β(t), 0 ≤ t ≤ T.

(10)

• The time stepping method used is the backward Crank Nicolson scheme.

3.1 Problem 1

• The computation of ∆ at time 0 is calculated by
∑N
j=1 λ

0
jφ
′(| x− xj(0) |)

where φ′(| x− xj(0) |) is partial derivative of φ(| x− xj(0) |) and 0 means
at time 0.

• The computation of Γ at time 0 is calculated by
∑N
j=1 λ

0
jφ
′′(| x− xj(0) |)

where φ′′(| x−xj(0) |) is partial derivative of φ(| x−xj(0) |) and 0 means
at time 0.

• The computation of ν at time 0 is calculated by u(log(S0),1.001σ)−u(log(S0),σ)
0.001∗σ

where u is an interpolation to the computed solution.

3

Problem Smin Smax Nu = 140 M = 160 ε
1a) SP 30 2K 160 80 3.5e-5
1b) SP 30 2K 160 100 1.8e-5
1c) SP 30 2K 40 100 2.6e-5
1a) CP 30 2K 50 80 9.1e-5
1b) CP 30 2K 40 80 1.9e-5
1c) CP 30 2K 40 150 9.9e-5

1a) ∆ SP 30 2K 160 80 6.0e-5
1a) ΓSP 30 2K 160 110 8.6e-5
1a) ν SP 30 2K 160 80 8.6e-5
1a) ∆ CP 30 2K 60 80 2.9e-5
1a) ΓCP 30 2K 80 100 6.2e-5
1a) ν CP 30 2K 160 80 1.1e-5

Table 1: Here SP and CP mean Standard Parameter and Challenging Parameter
respectively, Nu is starting uniform nodes and ε is max error in all three evaluate
points

4

