Notes on the BENCHOP implementations for the RBF-FD method

Slobodan Milovanović
(slobodan.milovanovic@it.uu.se)

March 14, 2015

Abstract

This text describes the RBF-FD method and its implementation for the BENCHOP-project.

All of the problems considered may be represented in the form $$
\begin{equation*} \frac{\partial u(s, t)}{\partial t}=\mathcal{L} u(s, t), \quad t \in[T, 0] \tag{1} \end{equation*}
$$

where u is the value of the priced contract, s represents the value of an underlying asset or assets and is treated as a spatial variable, t is an independent time variable, T is the time of option maturity and \mathcal{L} is a corresponding operator in one or two spatial dimensions represented by s.

1 Method Description

1.1 Discretization in space

The equation (1) is discretized in space by approximating the operator \mathcal{L} on a set of N scattered nodes $s^{(i)}$ using RBF-FD method. That means that the operator \mathcal{L} is approximated at every node as

$$
\begin{equation*}
\mathcal{L} u(s, t)^{(i)} \approx \sum_{k=1}^{n} w_{k}^{(i)} u_{k}^{(i)}, \quad i=1,2, \ldots, N \tag{2}
\end{equation*}
$$

where $w_{k}^{(i)}$ is a weight of a generalized finite difference stencil of size n. The weights are obtained by solving the following linear systems

$$
\begin{equation*}
\mathbf{A}^{(i)} \cdot \mathbf{w}^{(i)}=\mathbf{l}^{(i)}, \tag{3}
\end{equation*}
$$

for every stencil defined around each of the nodes $s^{(i)}$, where the matrix $\mathbf{A}^{(i)}$ is of the form

$$
\mathbf{A}^{(i)}=\left(\begin{array}{cccc}
\phi\left(\varepsilon\left\|s_{1}^{(i)}-s_{1}^{(i)}\right\|\right) & \phi\left(\varepsilon\left\|s_{1}^{(i)}-s_{2}^{(i)}\right\|\right) & \ldots & \phi\left(\varepsilon\left\|s_{1}^{(i)}-s_{n}^{(i)}\right\|\right) \\
\phi\left(\varepsilon\left\|s_{2}^{(i)}-s_{1}^{(i)}\right\|\right) & \phi\left(\varepsilon\left\|s_{2}^{(i)}-s_{2}^{(i)}\right\|\right) & \ldots & \phi\left(\varepsilon\left\|s_{2}^{(i)}-s_{n}^{(i)}\right\|\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(\varepsilon\left\|s_{n}^{(i)}-s_{1}^{(i)}\right\|\right) & \phi\left(\varepsilon\left\|s_{n}^{(i)}-s_{2}^{(i)}\right\|\right) & \ldots & \phi\left(\varepsilon\left\|s_{n}^{(i)}-s_{n}^{(i)}\right\|\right)
\end{array}\right)
$$

while vectors $\mathbf{w}^{(i)}$ and $\mathbf{l}^{(i)}$ look like

$$
\mathbf{w}^{(i)}=\left(\begin{array}{c}
w_{1}^{(i)} \\
w_{2}^{(i)} \\
\vdots \\
w_{n}^{(i)}
\end{array}\right), \quad \mathbf{l}^{(i)}=\left(\begin{array}{c}
{\left[\mathcal{L} \phi\left(\varepsilon\left\|s-s_{1}^{(i)}\right\|\right)\right]_{i}} \\
{\left[\mathcal{L} \phi\left(\varepsilon\left\|s-s_{2}^{(i)}\right\|\right)\right]_{i}} \\
\vdots \\
{\left[\mathcal{L} \phi\left(\varepsilon\left\|s-s_{n}^{(i)}\right\|\right)\right]_{i}}
\end{array}\right)
$$

having $\phi\left(\varepsilon\left\|s_{k}^{(i)}-s_{j}^{(i)}\right\|\right)$ as a radial basis function with shape parameter $\varepsilon \in \mathbb{R}^{+}$, collocated at $s_{j}^{(i)}$ and estimated at $s_{k}^{(i)}$.

Once all the $\mathbf{w}^{(i)}$ vectors are obtained, they can be arranged in a $N \times N$ matrix \mathbf{W} such that (1) is approximated by a discrete equation

$$
\begin{equation*}
\frac{\partial \mathbf{u}(t)}{\partial t} \approx \mathbf{W u}(t), \quad t \in[T, 0] \tag{4}
\end{equation*}
$$

where $\mathbf{u}(t)$ is a discrete solution in space.

1.2 Discretization in time

After discretization in space, the equation (4) is threated in a fashion of method of lines. Namely, it is discretized in time using backwards differentiation formula (BDF). First time step has been taken with BDF-1 scheme (5) and the rest of the integration in time is done by BDF-2 scheme (6), since the later needs information from two previous points in order to make a step further.

$$
\begin{align*}
& \mathbf{u}_{j} \approx(\mathbf{I}-\Delta t \mathbf{W})^{-1} \mathbf{u}_{j-1}, \quad j=1 \tag{5}\\
& \mathbf{u}_{j} \approx(\mathbf{I}-\Delta t \mathbf{W})^{-1}\left(\frac{4}{3} \mathbf{u}_{j-1}-\frac{1}{3} \mathbf{u}_{j-2}\right), \quad j=2,3, \ldots, M \tag{6}
\end{align*}
$$

where j is indexing the discretized time domain $[T, 0]$ with a time step Δt, consisting of M points, and \mathbf{I} is an identity matrix of size \mathbf{W}.

1.3 Advanced treatment

Since conditioning of the small linear systems by which weights $\mathbf{w}^{(i)}$ are obtained is highly sensitive to the choice of the shape parameter for different stencils, a stabilization method known as RBF-GA[1] is used.

More details will be available in [2].

References

[1] B. Fornberg, E. Lehto, and C. Powell. Stable calculation of Gaussian-based RBF-FD stencils. Computers ξ^{3} Mathematics with Applications, 65(4):627637, 2013.
[2] S. Milovanović and L. von Sydow. Radial Basis Function generated Finite Differences for Pricing Basket Options. Manuscript in preparation, 2016

