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Inofficial competition

Produce the most beautiful picture by modifying the RBF-QR
demo MATLAB codes. The winner can get a copy of the
English version of this book or eternal glory. . .

Head over Heels—Seventeen women scientist’s thoughts on
shoes.
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RBF partition of unity methods for PDEs
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Short introduction to (global) RBF methods

Basis functions: φj(x) = φ(‖x − x j‖). Translates of one
single function rotated around a center point.

Example: Gaussians
φ(εr) = exp(−ε2r2)

Approximation:
sε(x ) =

∑N
j=1 λjφj(x )

Collocation:
sε(x i ) = fi ⇒ Aλ = f ε=3ε=1/3ε=1

Advantages:

• Flexibility with respect to geometry.

• As easy in d dimensions.

• Spectral accuracy / exponential convergence.

• Continuosly differentiable approximation.

E. Larsson, DRWA15 (4 : 56)
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demo1.m
(RBF interpolation in 1-D)
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Observations from the results of demo1.m

I As N grows for fixed ε, convergence stagnates.

I As ε decreases for fixed N, the error blows up.

I λmin = −λmax means cancellation.

I Coefficients λ→∞ means that cond(A)→∞.

I For small ε, the RBFs are nearly flat, and almost
linearly dependent. That is, they form a bad basis.
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Why is it interesting to use small values of ε?

Driscoll & Fornberg 2002

Somewhat surprisingly, in 1-D for small ε

s(x , ε) = PN−1(x) + ε2PN+1(x) + ε4PN+3(x) + · · · ,

where Pj is a polynomial of degree j and PN−1(x) is the
Lagrange interpolant.

Implications

I It can be shown that cond(A) ∼ O(Nε−2(N−1)), but
the limit interpolant is well behaved.

I It is the intermediate step of computing λ that is
ill-conditioned.

I By choosing the corresponding nodes, the flat RBF
limit reproduces pseudo-spectral methods.

I This is a good approximation space.
E. Larsson, DRWA15 (7 : 56)
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The multivariate flat RBF limit

Larsson & Fornberg 2005, Schaback 2005
In n-D the flat limit can either be

s(x , ε) = PK (x) + ε2PK+2(x) + ε4PK+4(x) + · · · ,

where

(
(K − 1) + d

d

)
< N ≤

(
K + d

d

)
and PK is a

polynomial interpolant or

s(x , ε) = ε−2qPM−2q(x) + ε−2q+2PM−2q+2(x) + · · ·
+ PM(x) + ε2PM+2(x) + ε4PM+4(x) + · · · .

The questions of uniqueness and existence are connected
with multivariate polynomial uni-solvency.

Schaback 2005
Gaussian RBF limit interpolants always converge to the
de Boor/Ron least polynomial interpolant.
E. Larsson, DRWA15 (8 : 56)
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The multivariate flat RBF limit: Divergence

Necessary condition: ∃ Q(x) of degree N0 such that
Q(x j) = 0, j = 1, . . . ,N.
Then divergence as ε−2q may occur, where
q = b(M − N0)/2c and M = min non-degenerate degree.

Points Q N0 Basis M q
x − y 1 1, x , x2,

x3, x4, x5
5 2

x2 − y − 1 2 1, x , y , xy ,
y2xy2

3 0

x2 + y2 − 1 2 1, x , y , x2, xy ,
x3, x2y , x4

4 1

Divergence actually only occurs for the first case as ε−2.

E. Larsson, DRWA15 (9 : 56)
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The multivariate flat RBF limit, contd

Schaback 2005, Fornberg & Larsson 2005

Example: In two dimensions, the eigenvalues of A follow
a pattern: µ1 ∼ O(ε0), µ2,3 ∼ O(ε2), µ4,5,6 ∼ O(ε4),. . .

In general, there are

(
k + n − 1
n − 1

)
= (k+1)···(k+n−1)

(n−1)!

eigenvalues µj ∼ O(ε2k) in n dimensions.

Implications

I There is an opportunity for pseudo-spectral-like
methods in n-D.

I There is no amount of variable precision that will
save us.

I For “smooth” functions, a small ε can lead to very
high accuracy.

E. Larsson, DRWA15 (10 : 56)
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Expansions

RBF–QR methods

RBF-QR and PDEs

RBF–PUM

demo2.m
(Conditioning and errors)
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Expansions

RBF–QR methods

RBF-QR and PDEs

RBF–PUM

Comments on the results of demo2

I Error is small where condition is high and vice versa.

I Interesting region only reachable with stable method.

I Best results for small ε.
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E. Larsson, DRWA15 (12 : 56)



RBF–QR
Outline

Intro and motivation

RBF limits

Contour-Padé
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The Contour-Padé method

Fornberg & Wright 2004

I Think of ε as a complex variable.

I The limit ε = 0 is a removable singularity.

I Complex ε for which A is singular lead to poles.

I Pole location only depend on the location of nodes.

Example

I Evaluate f (ε) = 1−cos(ε)
ε2

I Numerically unstable.

I Removable singularity at 0.

I Compute f (0) as average of
f (ε) around “safe path”.

Bad region

Safe path

Target point

Im ε

Re ε

E. Larsson, DRWA15 (13 : 56)
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The Contour-Padé method: Algorithm

I Compute s(x , ε) = AeA
−1f at M points around a

“safe path” (circle).
I Inverse FFT of the M values gives a Laurent

expansion

u(x) = . . .+ s−2(x)ε−4 + s−1(x)ε−2︸ ︷︷ ︸
Needs to be converted

+s0(x)+s1(x)ε2+s2(x)ε4+. . .

I Convert the negative power expansion into Padé
form and find the correct number of poles and their
locations

s−1ε
−2 + s−2ε

−4 + . . . =
p1ε
−2 + · · ·+ pmε

−2m

1 + q1ε−2 + · · ·+ qnε−2n
.

I Evaluate u(x) using Taylor + Padé for any ε inside
the circle.

E. Larsson, DRWA15 (14 : 56)
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The Contour-Padé method: Results
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Quad precision 9e−12
Usual method   1e− 9
New method     1e−10

I Stable computation for all ε with Contour-Padé.

I Limited number of nodes, otherwise general.

I Expensive to compute A−1 at M points.

I Tricky to find poles.

I Modern efficient version RBF-RA, see Grady Wright.

E. Larsson, DRWA15 (15 : 56)
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Expansions of (Gaussian) RBFs

On the surface of the sphere

Hubbert & Baxter 2001

For different RBFs there are expansions

φ(‖x − xk‖) =
∞∑
j=0

ε2j
j∑

m=−j
cj ,mY

m
j (x )

Cartesian space, polynomial expansion

For Gaussians

φ(‖x − xk‖) = e−ε
2(x−xk )·(x−xk )

= e−ε
2(x ·x )e−ε

2(xk ·xk )e2ε2(x ·xk )

= e−ε
2(x ·x )e−ε

2(xk ·xk )
∞∑
j=0

ε2j 2j

j!
(x · xk)j

E. Larsson, DRWA15 (16 : 56)
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Expansions of (Gaussian) RBFs contd

Mercer expansion (Mercer 1909)

For a positive definite kernel K (x , xk) = φ(‖x − xk‖),
there is an expansion

φ(‖x − xk‖) =
∞∑
j=0

λjϕj(x )ϕj(xk),

where λj are positive eigenvalues, and ϕj(x ) are
eigenfunctions of an associated compact integral
operator.

E. Larsson, DRWA15 (17 : 56)
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The RBF-QR method on the sphere

Fornberg & Piret 2007

φ(‖x − xk‖) =
∞∑
j=0

ε2j
j∑

m=−j
cj ,mY

m
j (x )

The number of SPH functions/power matches the RBF
eigenvalue pattern on the sphere.

If we collect RBFs and expansion functions in vectors,
and coefficients in the matrix B, we have a relation

Φ(x ) = B · Y = Q · E · R · Y (x )

The new basis Ψ(x ) = R · Y (x ) spans the same space as
Φ(x ), but the ill-conditioning has been absorbed in E .

E. Larsson, DRWA15 (18 : 56)
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The RBF-QR method in Cartesian space

Fornberg, Larsson, Flyer 2011

The expansion of the Gaussian

φ(‖x − xk‖) = e−ε
2(x ·x )e−ε

2(xk ·xk )
∞∑
j=0

ε2j 2j

j!
(x · xk)j

+ The number of expansion functions for each power
of ε matches the eigenvalue pattern in A.

− The expansion functions are the monomials.

Better expansion functions in 2-D

I Change to polar coordinates.

I Trigs in the angular direction are perfect.

I Necessary to preserve powers of ε ⇒
Partial conversion to Chebyshev polynomials.

E. Larsson, DRWA15 (19 : 56)
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The RBF-QR method in Cartesian space contd

New expansion functions

{
T c
j ,m(x) = e−ε

2r2
r2mTj−2m(r) cos((2m + p)θ),

T s
j ,m(x) = e−ε

2r2
r2mTj−2m(r) sin((2m + p)θ),

Matrix form of factorized expansion

Express Φ(x ) = (φ(‖x − x1‖), . . . , φ(‖x − xN‖))T in
terms of expansion functions T (x ) = (T c

0,0,T
c
1,0, . . .)

T as.

Φ(x ) = C · D · T (x ),

where cij is O(1) and D = diag(O(ε0, ε2, ε2, ε4, . . .)).

Note that C has an infinite number of columns etc.

E. Larsson, DRWA15 (20 : 56)
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The RBF-QR method in Cartesian space contd

The QR part

The coefficient matrix C is QR-factorized so that

Φ(x ) = Q ·
[
R1 R2

] [ D1 0
0 D2

]
·T (x ), where R1 and

D1 are of size (N × N).

The change of basis

Make the new basis (same space) close to T

Ψ(x ) = D−1
1 R−1

1 QHΦ(x ) =
[
I R̃

]
· T (x ).

Analytical scaling of R̃ = D−1
1 R−1

1 R2D2

Any power of ε in D1 ≤ any power of ε in D2 ⇒
Scaling factors O(ε0) or smaller, truncation is possible.

E. Larsson, DRWA15 (21 : 56)
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demo3.m
(RBF interpolation in 2-D with and without RBF–QR)

E. Larsson, DRWA15 (22 : 56)
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Stable computation as ε → 0 and N →∞
The RBF-QR method allows stable computations for
small ε. (Fornberg, Larsson, Flyer 2011)

Consider a finite non-periodic domain.

Theorem (Platte, Trefethen, and Kuijlaars 2010):

Exponential convergence on equispaced nodes ⇒
exponential ill-conditioning.

Solution #1:

Cluster nodes towards the domain boundaries.

E. Larsson, DRWA15 (23 : 56)
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An RBF-QR example with clustered nodes in a
non-trivial domain

f (x , y) = exp(−(x − 0.1)2 − 0.5y2)
N=793 node points
Cosine-stretching towards each boundary
Maximum error 2.2e-10

E. Larsson, DRWA15 (24 : 56)
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demo4.m
(RBF interpolation in 2-D with clustered nodes)

E. Larsson, DRWA15 (25 : 56)
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Non-unisolvent nodes

I The expansion functions in the RBF-QR method are
at the bottom polynomials.

I QR-factorization in the non-unisolvent case will find
columns that are linearly dependent.

I Solved by ‘selective pivoting’ in the RBF-QR
method. (Larsson,Lehto,Heryudono, Fornberg 2013)

I Sensitive to nearly non-unisolvent cases.

I Cannot always recover the true Gaussian limit.

I However, whatever limit is produced is well-behaved.

This works in most cases, but it is not perfect.

E. Larsson, DRWA15 (26 : 56)
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Summary so far of the RBF–QR methods
properties

I Special expansion functions needed. Natural for the
sphere. Done in 1-D, 2-D, 3-D in Cartesian space.

I Works for small ε (in relation to the domain size).

I Provides significant improvements in accuracy.

I Clustering needed for N > 20, 200, 2000 depending
on dimensions.

I Sensitive to regular node layouts.

I Complexity O(N3) as RBF-Direct.

I Gets more expensive for larger ε.

E. Larsson, DRWA15 (27 : 56)
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The RBF–GA method

Fornberg, Lehto, Powell 2013

I Related approach

I Different expansion of the Gaussian RBF with
remainder

I Does not have problems with regular node layouts.

I Only accurate for fairly small node sets.

I 2–4 times faster than RBF–QR.

E. Larsson, DRWA15 (28 : 56)
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Brief survey of Mercer based methods

Fasshauer & McCourt 2012
Eigenvalues and eigenfunctions in 1-D can be chosen as

λn =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)n−1

,

φn = γne
−δ2x2

Hn−1(αβx),

where β =
(

1 +
(

2ε
α

)2
) 1

4

, γn =
√

β
2n−1Γ(n) , δ2 = α2

2 (β2 − 1).

I Eigenfunctions are orthogonal in a weighted norm.

I The QR-step is similar to that of previous methods.

I Tensor product form is used in higher dimensions ⇒
The powers of ε do not match the eigenvalues of A.

I New parameter α to tune.

E. Larsson, DRWA15 (29 : 56)
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Brief survey of Mercer based methods contd

De Marchi & Santin 2013

I Discrete numerical approximation of eigenfunctions.

I W diagonal matrix with cubature weights.
Perform SVD

√
W · A ·

√
W = Q · Σ2 · QT .

The eigenbasis is given by
√
W−1 · Q · Σ.

I Rapid decay of singular values ⇒ Basis can be
truncated ⇒ Low rank approximation of A.

De Marchi & Santin 2014

I Faster: Lanczos algorithm on Krylov space K(A, f ).

I Eigenfunctions through SVD of Hm from Lanczos.

I Computationally efficient.

I Basis depends on f . Potential trouble for f 6∈ NK (X )

For details it is a good idea to ask the authors :-)

E. Larsson, DRWA15 (30 : 56)
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Differentiation matrices and RBF-QR

Larsson, Lehto, Heryudono, Fornberg 2013

Let uX be an RBF approximation evaluated at the nodes.

To compute uY evaluated at the set of points Y , we use
Aλ = uX ⇒ λ = A−1uX to get

uY = AYλ = AYA
−1uX

where AY (i , j) = φj(yi ).

To instead evaluate a differential operator applied to u,

uY = ALYA
−1uX ,

where ALY (i , j) = Lφj(yi ).

To do the same thing using RBF–QR, replace φj with ψj .

E. Larsson, DRWA15 (31 : 56)
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Solving PDEs with RBFs/RBF-QR

Domain defined by: rb(θ) = 1 + 1
10 (sin(6θ) + sin(3θ)).

PDE:

{
∆u=f (x ), x ∈ Ω,
u=g(x ), x on ∂Ω,

Solution: u(x ) = sin(x2
1 + 2x2

2 )− sin(2x2
1 + (x2 − 0.5)2).

Collocation:(
A∆
X iA

−1
X

I

)(
uiX
ubX

)
=

(
f iX
gb
X

)
Evaluation:
uY = AYA

−1
X uX

Domain + nodes
E. Larsson, DRWA15 (32 : 56)
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demo5.m
(Solving the Poisson problem in 2-D using RBFs)

E. Larsson, DRWA15 (33 : 56)
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Cost of global method

Global RBF approximations of smooth functions are very
efficent.

A small number of node points per dimension are needed.

However N = 15 in 1-D becomes N = 50 625 in 4-D.

Up to three dimensions can be handled on a laptop, but
not more.

Furthermore, for less smooth functions, the number of
nodes per dimension grows quickly.

For a dense linear system: Direct solution O(N3), storage
O(N2).

⇒ Move to localized methods.

E. Larsson, DRWA15 (34 : 56)
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RBF partition of unity methods for PDEs

Global approximant

s(x) =
M∑
i=1

wi (x)si (x),

wi (x) are weight functions.

Local RBF approximants

si (x) =
∑Ni

j=1 λ
(i)
j φj(x).

Objectives for the RBF partition of unity approach
I Leverage spectral convergence properties.

I Retain geometric flexibility (also in high dimensions).

I Overcome conditioning and cost issues.

I Facilitate adaptive approximations.
Interpolation: Wendland 2002, Fasshuer 2007, Cavoretto, De Rossi,
Perracchione 2014. PDEs: Larsson, Heryudono 2012,. . .
E. Larsson, DRWA15 (35 : 56)
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Constructing weight functions
and covering the domain

Wendland functions + Shepard’s method

Generate weight functions from compactly
supported C 2 Wendland functions

ψ(ρ) = (4ρ+ 1)(1− ρ)4
+

using Shepard’s method wi (x) = ψi (x)∑M
j=1 ψj (x)

.

Disc coverings

Bad cover Good cover

E. Larsson, DRWA15 (36 : 56)
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Why do we need RBF–QR for RBF–PUM?

In order to achieve convergence we have two options

I Refine patches such that diameter H decreases.

I Increase node numbers such that Nj increases.

I In both cases, keep ε fixed.

The effect of patch refinement

H = 1, ε = 4 H = 0.5, ε = 4 H = 0.25, ε = 4

0 H
0

1

0 H
0

1

0 H
0

1

The RBF–QR method: Stable as ε → 0 for N � 1
Patch refinement is not a problem. N cannot be increased
to infinity, but to reasonable numbers. Clustering may or
may not be needed at the exterior boundary.

E. Larsson, DRWA15 (37 : 56)
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demo6.m
(Solving a Poisson problem in 2-D with RBF–PUM)

E. Larsson, DRWA15 (38 : 56)
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Poisson test problem

Larsson, Heryudono 2016

Domain defined by: rb(θ) = 1 + 1
10 (sin(6θ) + sin(3θ)).

PDE:

{
∆u=f (x ), x ∈ Ω,
u=g(x ), x on ∂Ω,

with u(r , θ) = 1
0.25r2+1

.

log10(error) RBF-PU solution

E. Larsson, DRWA15 (39 : 56)
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RBF-PUM results for the elliptic PDE

Increasing the number of local points for fixed number of
partitions ⇒ Spectral convergence.

Increasing the number of partitions for fixed nloc
(21, 28, 45, 66) ⇒ Algebraic convergence (th. 3, 4, 6, 8).

E. Larsson, DRWA15 (40 : 56)
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Problems used for convergence and solver tests

Poisson problem with
solution

u(x) = sin(x2
1 + 2x2

2 )

− sin(2x2
1 + (x2 − 0.5)2)
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E. Larsson, DRWA15 (41 : 56)
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Poisson: Errors with and without RBF–QR

Setting

N nodes, 5× 5 patches, (except dashed line with 4× 4)
ε = 1.2 or scaled such that εh ≈ ε√

N
= const.

Square, Cartesian nodes
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RBF−QR

RBF−Direct

Stationary

Square, Halton nodes
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RBF−QR

RBF−Direct

Stationary

I RBF–QR is needed for convergence.

I Cartesian nodes are sub-optimal with RBF–QR
E. Larsson, DRWA15 (42 : 56)
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RBF–PUM: Iterative solver

Question: Is there a structure in the unstructured case?
Cartesian, vertical

0 100 200 300

0

50

100

150

200

250

300

350

nz = 10801

Unstructured, vertical

0 100 200 300

0

50

100

150

200

250

300

350

nz = 6142

Cartesian, snake
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What is snake ordering?

Patches: Preceded and followed by a neighbour.

Nodes xk : Define home patch Ωj such that wj ≥ wi (xk).

Within patch: Sub-order according to secondary patch.

Heryudono, Larsson, Ramage, and von Sydow, 2015

E. Larsson, DRWA15 (44 : 56)
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Preconditioned iterative solution

I Right preconditioned GMRES, LM−1y = f , Mu = y .

I Preconditioner ILU(0) of central band.

I Stopping criterion, residual reduction of 10−8.

Results for the square with Cartesian nodes

N # it no prec # it ILU(0) Time gain

400 32 21 2.0
576 127 38 4.5
676 165 43 5.8
900 170 49 2.8

1089 180 53 4.3

E. Larsson, DRWA15 (45 : 56)
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Results for the iterative method contd.

Results for the square with Halton nodes

N # it no prec # it ILU(0) Time gain

436 189 72 3.1
583 209 91 2.4
681 231 112 2.7
884 262 125 2.3

1090 295 135 3.0

Results for the unstructured case

N # it no prec # it ILU(0) Time gain

398 207 68 3.6
695 235 78 5.6
994 279 119 3.6

1094 304 120 4.3
1292 322 149 3.3

E. Larsson, DRWA15 (46 : 56)
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Solving time-dependent PDEs

Before: Time-independent PDE

Continuous RBF collocated{
Lu=f (x ), x ∈ Ω,
u=g(x ), x on ∂Ω,

{
AL
X iA

−1
X uX=f iX

ubX=gb
X
,

Time-dependent PDE

Continuous RBF collocated{
∂u
∂t =Lu − f (x , t),
u=g(x , t),

{
∂
∂t u

i
X=AL

X iA
−1
X uX − f iX (t)

ubX=gb
X

(t),

Time evolution
We have mostly used a version of BDF-2 (second order,
implicit) for parabolic PDEs. Also built in solvers from
MATLAB.

E. Larsson, DRWA15 (47 : 56)
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demo7.m
(Solving the heat equation in 2-D)

E. Larsson, DRWA15 (48 : 56)
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Convergence results for convection-diffusion

Safdari-Vaighani, Heryudono, Larsson, 2104

Spectral case, H fixed Algebraic, H/h fixed

κ = 1, v = (1, 1) Expected rates p = 2, 3, 4

I Convergence as expected also in practice.

I Range could be extended with RBF-QR.

E. Larsson, DRWA15 (49 : 56)
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Comparisons for American option problem
Uniform nodes Non-uniform nodes

Accuracy comparison Run-time comparison

Reference: Uniform FD-operator splitting method.
E. Larsson, DRWA15 (50 : 56)
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Some results for option pricing

BENCHOP—The BENCHmarking project in Option
Pricing
http://www.it.uu.se/research/project/compfin/

benchop

Radial basis function partition of unity methods for
pricing vanilla basket options
Shcherbakov, Larsson 2015(?)

RBF–PUM operator splitting method for pricing
multi-asset American options
Shcherbakov, submitted

E. Larsson, DRWA15 (51 : 56)

http://www.it.uu.se/research/project/compfin/benchop
http://www.it.uu.se/research/project/compfin/benchop
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Stabilization for hyperbolic PDEs

Fornberg, Lehto 2011

For hyperbolic (purely convective) PDEs, local scattered
node RBF discretizations typically lead to unstable
eigenvalues.

For global RBFs, add term −γA−1u to ODE-system.

For RBF–FD add −γ∆ku to ODE-system.

Fast computation with RBF–QR: Larsson, Lehto,
Heryudono, Fornberg 2013

E. Larsson, DRWA15 (52 : 56)
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RBF-generated finite differences RBF–FD

Larsson, Lehto, Heryudono, Fornberg 2013

I Approximate Lu(xc)
using the n nearest nodes by

Lu(xc) ≈
n∑

k=1

wku(xk)

I Find weights wk by asking
exactness for RBF-interpolants.


φ1(x1) φ1(x2) · · · φ1(xn)
φ2(x1) φ2(x2) · · · φ2(xn)

...
...

. . .
...

φn(x1) φn(x2) · · · φn(xn)




w1

w2
...
wn

 =


Lφ1(xc)
Lφ2(xc)

...
Lφn(xc)

 .

E. Larsson, DRWA15 (53 : 56)
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Is RBF-QR needed with RBF–FD?
Approximation of ∆u with n = 56. Magenta lines are
with added polynomial terms p = 0, . . . , 3.
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ε = 1.5, direct

ε = 1.5, RBF-QR

ε = 0 (polynomial)

εh= 0.3, direct

I Scaled ε: No ill-conditioning, but
saturation/stagnation. (See Kindelan et al.)

I Fixed ε: RBF-QR is needed.

I Added terms: Compromise with partial recovery.
E. Larsson, DRWA15 (54 : 56)
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Shallow water simulation

Tillenius, Larsson, Lehto, Flyer 2015

The shallow water equations
∂u
∂t = −(u · ∇)u− f (x× u)− g∇h,
∂h
∂t = −∇ · (hu)

Test cases
I Flow over an isolated

mountain

I Highly non-linear wave
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E. Larsson, DRWA15 (55 : 56)
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Results shallow water

The highly non-linear wave with 612 346 nodes on the
sphere.

Some problems with stability. Did not use RBF–QR.
Would need adaptivity.

E. Larsson, DRWA15 (56 : 56)
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