

RBF-QR

Outline Intro and motivation RBF limits Contour-Padé Expansions RBF-QR methods RBF-QR and PDEs RBF-PUIM

The RBF-QR method and its applications—A tutorial in two parts

Elisabeth Larsson with thanks to numerous co-investigators and colleagues

> Division of Scientific Computing Department of Information Technology Uppsala University

Dolomites Research Week on Approximation 2015

E. Larsson, DRWA15 (1:56)

・ロト・雪 ・ 山 ・ 山 ・ 小田 ・ 小田 ・

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Inofficial competition

Produce the *most beautiful picture* by modifying the RBF-QR demo MATLAB codes. The winner can get a copy of the English version of this book or eternal glory...

Head over Heels—Seventeen women scientist's thoughts on shoes.

E. Larsson, DRWA15 (2 : 56)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

Outline

Introduction and motivation

RBF limits

The Contour-Padé method

Expansions

RBF–QR methods

RBF-QR and **PDEs**

RBF partition of unity methods for PDEs

E. Larsson, DRWA15 (3:56)

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Short introduction to (global) RBF methods

Basis functions: $\phi_j(\underline{x}) = \phi(||\underline{x} - \underline{x}_j||)$. Translates of one single function rotated around a center point.

Example: Gaussians $\phi(\varepsilon r) = \exp(-\varepsilon^2 r^2)$

Approximation: $s_{\varepsilon}(\underline{x}) = \sum_{j=1}^{N} \lambda_j \phi_j(\underline{x})$ Collocation:

 $s_{\varepsilon}(\underline{x}_i) = f_i \Rightarrow A\underline{\lambda} = \underline{f}$ ε =

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advantages:

- Flexibility with respect to geometry.
- As easy in *d* dimensions.
- Spectral accuracy / exponential convergence.
- Continuosly differentiable approximation.

```
E. Larsson, DRWA15 (4 : 56)
```


RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

demo1.m (RBF interpolation in 1-D)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

E. Larsson, DRWA15 (5:56)

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

Observations from the results of demo1.m

- As N grows for fixed ε , convergence stagnates.
- As ε decreases for fixed *N*, the error blows up.
- $\lambda_{\min} = -\lambda_{\max}$ means cancellation.
- Coefficients $\lambda \to \infty$ means that $\operatorname{cond}(A) \to \infty$.
- For small ε, the RBFs are nearly flat, and almost linearly dependent. That is, they form a bad basis.

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Why is it interesting to use small values of ε ?

Driscoll & Fornberg 2002

Somewhat surprisingly, in 1-D for small ε

$$s(x,\varepsilon) = P_{N-1}(x) + \varepsilon^2 P_{N+1}(x) + \varepsilon^4 P_{N+3}(x) + \cdots,$$

where P_i is a polynomial of degree j and $P_{N-1}(x)$ is the Lagrange interpolant.

Implications

- ▶ It can be shown that $\operatorname{cond}(A) \sim \mathcal{O}(N\varepsilon^{-2(N-1)})$, but the limit interpolant is well behaved.
- It is the intermediate step of computing λ that is ill-conditioned.
- By choosing the corresponding nodes, the flat RBF limit reproduces pseudo-spectral methods.
- This is a good approximation space. ・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ

E. Larsson, DRWA15 (7:56)

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

The multivariate flat RBF limit

Larsson & Fornberg 2005, Schaback 2005 In <u>n-D</u> the flat limit can either be

$$s(\underline{x},\varepsilon) = P_{\kappa}(\underline{x}) + \varepsilon^2 P_{\kappa+2}(\underline{x}) + \varepsilon^4 P_{\kappa+4}(\underline{x}) + \cdots,$$

where
$$\binom{(K-1)+d}{d} < N \le \binom{K+d}{d}$$
 and P_K is a polynomial interpolant or

$$s(\underline{x},\varepsilon) = \varepsilon^{-2q} P_{M-2q}(\underline{x}) + \varepsilon^{-2q+2} P_{M-2q+2}(\underline{x}) + \cdots + P_{M}(\underline{x}) + \varepsilon^{2} P_{M+2}(\underline{x}) + \varepsilon^{4} P_{M+4}(\underline{x}) + \cdots$$

The questions of uniqueness and existence are connected with multivariate polynomial uni-solvency.

Schaback 2005

Gaussian RBF limit interpolants always converge to the de Boor/Ron least polynomial interpolant.

E. Larsson, DRWA15 (8:56)

・ロト・西ト・西ト・日・ ウヘぐ

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

The multivariate flat RBF limit: Divergence

Necessary condition: $\exists Q(\underline{x})$ of degree N_0 such that $\overline{Q(\underline{x}_j)} = 0, j = 1, ..., N$. Then divergence as ε^{-2q} may occur, where $q = \lfloor (M - N_0)/2 \rfloor$ and $M = \min$ non-degenerate degree.

Points	Q	N ₀	Basis	М	q
•	<i>х</i> – <i>у</i>	1	1, x, x^2 , x^3 , x^4 , x^5	5	2
• • • •	$x^2 - y - 1$	2	$ \begin{array}{l} 1, x, y, xy, \\ y^2 x y^2 \end{array} $	3	0
× • ×	$x^2 + y^2 - 1$	2	$ \begin{array}{c} 1, x, y, x^2, xy, \\ x^3, x^2y, x^4 \end{array} $	4	1

Divergence actually only occurs for the first case as ε^{-2} .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

E. Larsson, DRWA15 (9:56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

The multivariate flat RBF limit, contd

Schaback 2005, Fornberg & Larsson 2005

Example: In two dimensions, the eigenvalues of A follow a pattern: $\mu_1 \sim \mathcal{O}(\varepsilon^0)$, $\mu_{2,3} \sim \mathcal{O}(\varepsilon^2)$, $\mu_{4,5,6} \sim \mathcal{O}(\varepsilon^4)$,...

In general, there are $\binom{k+n-1}{n-1} = \frac{(k+1)\cdots(k+n-1)}{(n-1)!}$ eigenvalues $\mu_j \sim \mathcal{O}(\varepsilon^{2k})$ in *n* dimensions.

Implications

- There is an opportunity for pseudo-spectral-like methods in n-D.
- There is no amount of variable precision that will save us.
- For "smooth" functions, a small ε can lead to very high accuracy.

E. Larsson, DRWA15 (10 : 56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

demo2.m (Conditioning and errors)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

E. Larsson, DRWA15 (11:56)

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Comments on the results of demo2

- Error is small where condition is high and vice versa.
- Interesting region only reachable with stable method.
- Best results for small ε .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Teaser: Conditioning for RBF-QR is perfect...

E. Larsson, DRWA15 (12:56)

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

The Contour-Padé method

Fornberg & Wright 2004

- Think of ε as a complex variable.
- The limit $\varepsilon = 0$ is a removable singularity.
- Complex ε for which A is singular lead to poles.
- Pole location only depend on the location of nodes.

Example

- Evaluate $f(\varepsilon) = \frac{1 \cos(\varepsilon)}{\varepsilon^2}$
- Numerically unstable.
- Removable singularity at 0.
- Compute f(0) as average of f(ε) around "safe path".

RBF-QR

Outline

Intro and motivation

1

RBF limits

Expansions

- RBF–QR methods
- RBF-QR and PDEs
- RBF-PUM

The Contour-Padé method: Algorithm

- Compute s(x, ε) = A_eA⁻¹f at M points around a "safe path" (circle).
- Inverse FFT of the *M* values gives a Laurent expansion

$$J(\underline{x}) = \underbrace{\dots + s_{-2}(\underline{x})\varepsilon^{-4} + s_{-1}(\underline{x})\varepsilon^{-2}}_{\text{Needs to be converted}} + s_0(\underline{x}) + s_1(\underline{x})\varepsilon^2 + s_2(\underline{x})\varepsilon^4 + \dots$$

 Convert the negative power expansion into Padé form and find the correct number of poles and their locations

$$s_{-1}\varepsilon^{-2}+s_{-2}\varepsilon^{-4}+\ldots=rac{p_1\varepsilon^{-2}+\cdots+p_m\varepsilon^{-2m}}{1+q_1\varepsilon^{-2}+\cdots+q_n\varepsilon^{-2n}}.$$

- Evaluate u(<u>x</u>) using Taylor + Padé for any ε inside the circle.

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods

RBF-QR and PDEs

RBF-PUM

The Contour-Padé method: Results

- Stable computation for all ε with Contour-Padé.
- Limited number of nodes, otherwise general.
- Expensive to compute A^{-1} at M points.
- Tricky to find poles.
- Modern efficient version RBF-RA, see Grady Wright.

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods RBF-QR and PDEs RBF–PUM

Expansions of (Gaussian) RBFs

On the surface of the sphere Hubbert & Baxter 2001 For different RBFs there are expansions

$$\phi(\|\underline{x} - \underline{x}_k\|) = \sum_{j=0}^{\infty} \varepsilon^{2j} \sum_{m=-j}^{j} c_{j,m} Y_j^m(\underline{x})$$

Cartesian space, polynomial expansion For Gaussians

$$\begin{aligned} \phi(\|\underline{x} - \underline{x}_k\|) &= e^{-\varepsilon^2(\underline{x} - \underline{x}_k) \cdot (\underline{x} - \underline{x}_k)} \\ &= e^{-\varepsilon^2(\underline{x} \cdot \underline{x})} e^{-\varepsilon^2(\underline{x}_k \cdot \underline{x}_k)} e^{2\varepsilon^2(\underline{x} \cdot \underline{x}_k)} \\ &= e^{-\varepsilon^2(\underline{x} \cdot \underline{x})} e^{-\varepsilon^2(\underline{x}_k \cdot \underline{x}_k)} \sum_{j=0}^{\infty} \varepsilon^{2j} \frac{2^j}{j!} (\underline{x} \cdot \underline{x}_k)^j \end{aligned}$$

E. Larsson, DRWA15 (16 : 56)

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods RBF-QR and PDEs RBF–PUM

Mercer expansion (Mercer 1909)

Expansions of (Gaussian) RBFs contd

For a positive definite kernel $K(\underline{x}, \underline{x}_k) = \phi(||\underline{x} - \underline{x}_k||)$, there is an expansion

$$\phi(\|\underline{x} - \underline{x}_k\|) = \sum_{j=0}^{\infty} \lambda_j \varphi_j(\underline{x}) \varphi_j(\underline{x}_k),$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where λ_j are positive eigenvalues, and $\varphi_j(\underline{x})$ are eigenfunctions of an associated compact integral operator.

E. Larsson, DRWA15 (17:56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs RBF-PUM

The RBF-QR method on the sphere

Fornberg & Piret 2007

$$\phi(\|\underline{x} - \underline{x}_k\|) = \sum_{j=0}^{\infty} \varepsilon^{2j} \sum_{m=-j}^{j} c_{j,m} Y_j^m(\underline{x})$$

The number of SPH functions/power matches the RBF eigenvalue pattern on the sphere.

If we collect RBFs and expansion functions in vectors, and coefficients in the matrix B, we have a relation

$$\Phi(\underline{x}) = B \cdot Y = Q \cdot E \cdot R \cdot Y(\underline{x})$$

The new basis $\Psi(\underline{x}) = R \cdot Y(\underline{x})$ spans the same space as $\Phi(\underline{x})$, but the ill-conditioning has been absorbed in *E*.

E. Larsson, DRWA15 (18 : 56)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

RBF–QR

0

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs RBF-PUM

The RBF-QR method in Cartesian space

Fornberg, Larsson, Flyer 2011

The expansion of the Gaussian

$$\phi(\|\underline{x}-\underline{x}_k\|) = e^{-\varepsilon^2(\underline{x}\cdot\underline{x})}e^{-\varepsilon^2(\underline{x}_k\cdot\underline{x}_k)}\sum_{j=0}^{\infty}\varepsilon^{2j}\frac{2^j}{j!}(\underline{x}\cdot\underline{x}_k)^j$$

+ The number of expansion functions for each power of ε matches the eigenvalue pattern in A.

- The expansion functions are the monomials.

Better expansion functions in 2-D

- Change to polar coordinates.
- Trigs in the angular direction are perfect.
- ► Necessary to preserve powers of ε ⇒ Partial conversion to Chebyshev polynomials.

E. Larsson, DRWA15 (19:56)

・ロト・日本・モート ヨー うべら

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs

RBF-PUM

The RBF-QR method in Cartesian space contd

New expansion functions

$$\begin{cases} T_{j,m}^{c}(\underline{x}) = e^{-\varepsilon^{2}r^{2}}r^{2m}T_{j-2m}(r)\cos((2m+p)\theta), \\ T_{j,m}^{s}(\underline{x}) = e^{-\varepsilon^{2}r^{2}}r^{2m}T_{j-2m}(r)\sin((2m+p)\theta), \end{cases}$$

Matrix form of factorized expansion

Express $\Phi(\underline{x}) = (\phi(||\underline{x} - \underline{x}_1||), \dots, \phi(||\underline{x} - \underline{x}_N||))^T$ in terms of expansion functions $T(\underline{x}) = (T_{0,0}^c, T_{1,0}^c, \dots)^T$ as.

$$\Phi(\underline{x}) = C \cdot D \cdot T(\underline{x}),$$

where c_{ij} is $\mathcal{O}(1)$ and $D = \text{diag}(\mathcal{O}(\varepsilon^0, \varepsilon^2, \varepsilon^2, \varepsilon^4, \ldots))$. Note that C has an infinite number of columns etc.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

E. Larsson, DRWA15 (20 : 56)

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs RBF-PUM

The RBF-QR method in Cartesian space contd

The QR part

The coefficient matrix C is QR-factorized so that

 $\Phi(\underline{x}) = Q \cdot \begin{bmatrix} R_1 & R_2 \end{bmatrix} \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \cdot T(\underline{x}), \text{ where } R_1 \text{ and } D_1 \text{ are of size } (N \times N).$

The change of basis

Make the new basis (same space) close to T

$$\Psi(\underline{x}) = D_1^{-1} R_1^{-1} Q^H \Phi(\underline{x}) = \begin{bmatrix} I & \tilde{R} \end{bmatrix} \cdot T(\underline{x}).$$

Analytical scaling of $\tilde{R} = D_1^{-1}R_1^{-1}R_2D_2$ Any power of ε in $D_1 \leq$ any power of ε in $D_2 \Rightarrow$ Scaling factors $\mathcal{O}(\varepsilon^0)$ or smaller, truncation is possible.

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods

RBF-QR and PDEs

RBF-PUM

demo3.m

(RBF interpolation in 2-D with and without RBF-QR)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs

RBF-PUM

Stable computation as $\varepsilon ightarrow 0$ and $N ightarrow \infty$

The RBF-QR method allows stable computations for small ε . (Fornberg, Larsson, Flyer 2011)

Consider a finite non-periodic domain.

Theorem (Platte, Trefethen, and Kuijlaars 2010): Exponential convergence on equispaced nodes \Rightarrow exponential ill-conditioning.

Solution #1:

Cluster nodes towards the domain boundaries.

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs

RBF-PUM

An RBF-QR example with clustered nodes in a non-trivial domain

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods

RBF-QR and PDEs RBF-PUM

demo4.m

(RBF interpolation in 2-D with clustered nodes)

Non-unisolvent nodes

- RBF–QR
- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods RBF-QR and PDEs RBF-PUM

- The expansion functions in the RBF-QR method are at the bottom polynomials.
- QR-factorization in the non-unisolvent case will find columns that are linearly dependent.
- Solved by 'selective pivoting' in the RBF-QR method. (Larsson,Lehto,Heryudono, Fornberg 2013)
- Sensitive to nearly non-unisolvent cases.
- Cannot always recover the true Gaussian limit.
- ► However, whatever limit is produced is well-behaved.

This works in most cases, but it is not perfect.

E. Larsson, DRWA15 (26:56)

RBF–QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods RBF-QR and PDEs RBF-PUM

Summary so far of the RBF–QR methods properties

- Special expansion functions needed. Natural for the sphere. Done in 1-D, 2-D, 3-D in Cartesian space.
- Works for small ε (in relation to the domain size).
- Provides significant improvements in accuracy.
- Clustering needed for N > 20, 200, 2000 depending on dimensions.
- Sensitive to regular node layouts.
- Complexity $\mathcal{O}(N^3)$ as RBF-Direct.
- Gets more expensive for larger ε .

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs RBF-PUM

The RBF-GA method

Fornberg, Lehto, Powell 2013

- Related approach
- Different expansion of the Gaussian RBF with remainder
- Does not have problems with regular node layouts.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Only accurate for fairly small node sets.
- ▶ 2-4 times faster than RBF-QR.

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Brief survey of Mercer based methods

Fasshauer & McCourt 2012

Eigenvalues and eigenfunctions in 1-D can be chosen as

$$\lambda_n = \sqrt{\frac{\alpha^2}{\alpha^2 + \delta^2 + \varepsilon^2}} \left(\frac{\varepsilon^2}{\alpha^2 + \delta^2 + \varepsilon^2}\right)^{n-1},$$

$$\phi_n = \gamma_n e^{-\delta^2 x^2} H_{n-1}(\alpha \beta x),$$

where
$$\beta = \left(1 + \left(\frac{2\varepsilon}{\alpha}\right)^2\right)^{\frac{1}{4}}$$
, $\gamma_n = \sqrt{\frac{\beta}{2^{n-1}\Gamma(n)}}$, $\delta^2 = \frac{\alpha^2}{2}(\beta^2 - 1)$.

- Eigenfunctions are orthogonal in a weighted norm.
- The QR-step is similar to that of previous methods.
- Tensor product form is used in higher dimensions \Rightarrow The powers of ε do not match the eigenvalues of A.
- \blacktriangleright New parameter α to tune.

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods RBF-QR and PDEs RBF-PUM

Brief survey of Mercer based methods contd

De Marchi & Santin 2013

- Discrete numerical approximation of eigenfunctions.
- ► W diagonal matrix with cubature weights. Perform SVD $\sqrt{W} \cdot A \cdot \sqrt{W} = Q \cdot \Sigma^2 \cdot Q^T$. The eigenbasis is given by $\sqrt{W^{-1}} \cdot Q \cdot \Sigma$.
- ► Rapid decay of singular values ⇒ Basis can be truncated ⇒ Low rank approximation of A.

De Marchi & Santin 2014

- Faster: Lanczos algorithm on Krylov space $\mathcal{K}(A, f)$.
- Eigenfunctions through SVD of H_m from Lanczos.
- Computationally efficient.
- ▶ Basis depends on *f*. Potential trouble for $f \notin \mathcal{N}_{\mathcal{K}}(X)$

For details it is a good idea to ask the authors :-)

E. Larsson, DRWA15 (30 : 56)

RBF-QR

Outline

```
Intro and motivation
```

RBF limits

```
Contour-Padé
```

```
Expansions
```

```
RBF-QR methods
RBF-QR and PDEs
```

RBF-PUM

Differentiation matrices and RBF-QR

Larsson, Lehto, Heryudono, Fornberg 2013

Let \underline{u}_X be an RBF approximation evaluated at the nodes.

To compute \underline{u}_Y evaluated at the set of points Y, we use $A\underline{\lambda} = \underline{u}_X \implies \underline{\lambda} = A^{-1}\underline{u}_X$ to get $\underline{u}_Y = A_Y\underline{\lambda} = A_YA^{-1}\underline{u}_X$ where $A_Y(i,j) = \phi_j(y_i)$.

To instead evaluate a differential operator applied to \underline{u} ,

$$\underline{u}_Y = A_Y^{\mathcal{L}} A^{-1} \underline{u}_X,$$

where $A_Y^{\mathcal{L}}(i,j) = \mathcal{L}\phi_j(y_i)$.

To do the same thing using RBF–QR, replace ϕ_j with ψ_j .

E. Larsson, DRWA15 (31 : 56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Solving PDEs with RBFs/RBF-QR

<u>Domain</u> defined by: $r_b(\theta) = 1 + \frac{1}{10}(\sin(6\theta) + \sin(3\theta)).$

$$\underline{\mathsf{PDE}}: \begin{cases} \Delta u = f(\underline{x}), & \underline{x} \in \Omega, \\ u = g(\underline{x}), & \underline{x} \text{ on } \partial\Omega \end{cases}$$

Solution:
$$u(\underline{x}) = \sin(x_1^2 + 2x_2^2) - \sin(2x_1^2 + (x_2 - 0.5)^2).$$

Collocation:

$$\begin{pmatrix} A_{X^{i}}^{\Delta}A_{X}^{-1} \\ I \end{pmatrix} \begin{pmatrix} \underline{u}_{X}^{i} \\ \underline{u}_{X}^{b} \end{pmatrix} = \begin{pmatrix} \underline{f}_{X}^{i} \\ \underline{g}_{X}^{b} \end{pmatrix}$$

 $\underline{\text{Evaluation}}:$ $\underline{u}_Y = A_Y A_X^{-1} \underline{u}_X$

Domain + nodes

E. Larsson, DRWA15 (32:56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

demo5.m (Solving the Poisson problem in 2-D using RBFs)

E. Larsson, DRWA15 (33:56)

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Cost of global method

Global RBF approximations of smooth functions are very efficent.

A small number of node points per dimension are needed. However N = 15 in 1-D becomes $N = 50\,625$ in 4-D.

Up to three dimensions can be handled on a laptop, but not more.

Furthermore, for less smooth functions, the number of nodes per dimension grows quickly.

For a dense linear system: Direct solution $\mathcal{O}(N^3)$, storage $\mathcal{O}(N^2)$.

 \Rightarrow Move to localized methods.

E. Larsson, DRWA15 (34 : 56)

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

RBF–QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF–QR methods
- RBF-QR and PDEs
- RBF-PUM

RBF partition of unity methods for PDEs

Global approximant $s(\underline{x}) = \sum_{i=1}^{M} w_i(\underline{x}) s_i(\underline{x}),$

 $w_i(\underline{x})$ are weight functions.

Local RBF approximants $s_i(\underline{x}) = \sum_{j=1}^{N_i} \lambda_j^{(i)} \phi_j(\underline{x}).$

Objectives for the RBF partition of unity approach

- Leverage spectral convergence properties.
- Retain geometric flexibility (also in high dimensions).
- Overcome conditioning and cost issues.
- Facilitate adaptive approximations.

Interpolation: Wendland 2002, Fasshuer 2007, Cavoretto, De Rossi, Perracchione 2014. PDEs: Larsson, Heryudono 2012,...

E. Larsson, DRWA15 (35 : 56)

RBF–QR

Outline

Intro and motivation

RBF limits

- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs

RBF-PUM

Constructing weight functions and covering the domain

Wendland functions + Shepard's method

Generate weight functions from compactly supported C^2 Wendland functions

 $\psi(\rho) = (4\rho + 1)(1 - \rho)_+^4$

using Shepard's method $w_i(\underline{x}) = \frac{\psi_i(\underline{x})}{\sum_{j=1}^{M} \psi_j(\underline{x})}$.

Disc coverings

э

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs

RBF-PUM

Why do we need RBF-QR for RBF-PUM?

In order to achieve convergence we have two options

- ▶ Refine patches such that diameter *H* decreases.
- Increase node numbers such that N_j increases.
- In both cases, keep ε fixed.

The effect of patch refinement

The RBF–QR method: Stable as $\varepsilon \rightarrow 0$ for $N \gg 1$

Patch refinement is not a problem. N cannot be increased to infinity, but to reasonable numbers. Clustering may or may not be needed at the exterior boundary.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

```
E. Larsson, DRWA15 (37 : 56)
```


RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

demo6.m (Solving a Poisson problem in 2-D with RBF-PUM)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

E. Larsson, DRWA15 (38:56)

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs

RBF-PUM

Poisson test problem

Larsson, Heryudono 2016 <u>Domain</u> defined by: $r_b(\theta) = 1 + \frac{1}{10}(\sin(6\theta) + \sin(3\theta))$. $\underline{\mathsf{PDE}}: \begin{cases} \Delta u = f(\underline{x}), & \underline{x} \in \Omega, \\ u = g(x), & x \text{ on } \partial\Omega, \end{cases} \text{ with } u(r, \theta) = \frac{1}{0.25r^2 + 1}.$ $\log_{10}(error)$ **RBF-PU** solution 0.5 7 -10 0.5 y -12 -0.5 -14

0

v ⁰

E. Larsson, DRWA15 (39 : 56)

0.5

1

0

x

-0.5

-1

-1

-1 _1 X <□▶ <륜▶ <差▶ <差▶ 差 のQ()

0

RBF-PUM results for the elliptic PDE

Increasing the number of local points for fixed number of partitions \Rightarrow Spectral convergence.

Increasing the number of partitions for fixed n_{loc} (21, 28, 45, 66) \Rightarrow <u>Algebraic</u> convergence (th. 3, 4, 6, 8). E. Larsson, DRWA15 (40:56)

UPPSALA UNIVERSITET

RBF–QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs

RBF-PUM

Problems used for convergence and solver tests

RBF-QR

Outline

```
Intro and motivation
```

RBF limits

```
Contour-Padé
```

```
Expansions
```

```
RBF-QR methods
```

RBF-QR and PDEs

RBF-PUM

Poisson: Errors with and without RBF-QR

Setting

N nodes, 5×5 patches, (except dashed line with 4×4) $\varepsilon = 1.2$ or scaled such that $\varepsilon h \approx \frac{\varepsilon}{\sqrt{N}} = \text{const.}$

RBF-QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

RBF-PUM: Iterative solver

Question: Is there a structure in the unstructured case?

Cartesian, vertical

Unstructured, vertical

Cartesian, snake

Unstructured, snake

A (1) > A (2)

900

RBF–QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

What is snake ordering?

Patches: Preceded and followed by a neighbour. Nodes x_k : Define home patch Ω_j such that $w_j \ge w_i(x_k)$. Within patch: Sub-order according to secondary patch.

Heryudono, Larsson, Ramage, and von Sydow, 2015

E. Larsson, DRWA15 (44 : 56)

・ロト・西ト・西ト・日・ つくぐ

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Preconditioned iterative solution

- Right preconditioned GMRES, $LM^{-1}y = f$, Mu = y.
- ▶ Preconditioner ILU(0) of central band.
- Stopping criterion, residual reduction of 10^{-8} .

Results for the square with Cartesian nodes

Ν	# it no prec	# it ILU(0)	Time gain
400	32	21	2.0
576	127	38	4.5
676	165	43	5.8
900	170	49	2.8
1089	180	53	4.3

Results for the iterative method contd.

UPPSALA UNIVERSITET

RBF-QR

Intro and motivation RBF limits Contour-Padé Expansions RBF-QR methods RBF-QR and PDEs

Outline

RBF-PUM

Results for the square with Halton nodes

Ν	# it no prec	# it ILU(0)	Time gain
436	189	72	3.1
583	209	91	2.4
681	231	112	2.7
884	262	125	2.3
1090	295	135	3.0

Results for the unstructured case

	Ν	# it no prec	# it ILU(0)	Time gain
	398	207	68	3.6
	695	235	78	5.6
	994	279	119	3.6
	1094	304	120	4.3
	1292	322	149	3.3
E. Lars	son, DRWA1	5 (46 : 56)	< □ > < @ >	< E > < E > < E

RBF–QR

Outline

Intro and motivation

RBF limits

```
Contour-Padé
```

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Solving time-dependent PDEs

Before: Time-independent PDE

Continuous

 $\begin{cases} \mathcal{L}u = f(\underline{x}), & \underline{x} \in \Omega, \\ u = g(\underline{x}), & \underline{x} \text{ on } \partial\Omega, \end{cases}$

RBF collocated

$$\begin{cases} A_{X^{i}}^{\mathcal{L}}A_{X}^{-1}\underline{u}_{X} = \underline{f}_{X}^{i} \\ \underline{u}_{X}^{b} = \underline{g}_{X}^{b}, \end{cases}$$

Time-dependent PDE

Continuous $\begin{cases} \frac{\partial u}{\partial t} = \mathcal{L}u - f(\underline{x}, t), \\ u = g(\underline{x}, t), \end{cases} \quad \begin{array}{l} \mathsf{RBF} \text{ collocated} \\ \begin{cases} \frac{\partial}{\partial t} \underline{u}_X^i = \mathcal{A}_{X^i}^{\mathcal{L}} \mathcal{A}_X^{-1} \underline{u}_X - \underline{f}_X^i(t) \\ \underline{u}_X^b = \underline{g}_X^b(t), \end{cases}$

Time evolution

We have mostly used a version of BDF-2 (second order, implicit) for parabolic PDEs. Also built in solvers from MATLAB.

RBF-QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

demo7.m (Solving the heat equation in 2-D)

E. Larsson, DRWA15 (48 : 56)

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF–QR methods

RBF-QR and PDEs

RBF-PUM

Convergence results for convection-diffusion

Safdari-Vaighani, Heryudono, Larsson, 2104

Spectral case, H fixed

Algebraic, H/h fixed

Convergence as expected also in practice.

► Range could be extended with RBF-QR.

E. Larsson, DRWA15 (49 : 56)

・ロト・西ト・西ト・西ト・日・ ひゃう

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Comparisons for American option problem

Uniform nodes

Accuracy comparison

Non-uniform nodes

Run-time comparison

RBF–QR

Outline

Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Some results for option pricing

BENCHOP—The BENCHmarking project in Option
Pricing
http://www.it.uu.se/research/project/compfin/
benchop

Radial basis function partition of unity methods for pricing vanilla basket options Shcherbakov, Larsson 2015(?)

RBF–PUM operator splitting method for pricing multi-asset American options Shcherbakov, submitted

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

RBF–QR

Outline Intro and motivation

RBF limits

Contour-Padé

Expansions

RBF-QR methods

RBF-QR and PDEs

RBF-PUM

Stabilization for hyperbolic PDEs

Fornberg, Lehto 2011

For hyperbolic (purely convective) PDEs, local scattered node RBF discretizations typically lead to unstable eigenvalues.

For global RBFs, add term $-\gamma A^{-1}\underline{u}$ to ODE-system.

For RBF–FD add $-\gamma \Delta^k \underline{u}$ to ODE-system.

Fast computation with RBF–QR: Larsson, Lehto, Heryudono, Fornberg 2013

RBF–QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

RBF-generated finite differences RBF-FD

Larsson, Lehto, Heryudono, Fornberg 2013

- ► Approximate Lu(x_c) using the *n* nearest nodes by Lu(x_c) ≈ ∑ⁿ_{k=1} w_ku(x_k)
- Find weights w_k by asking exactness for RBF-interpolants.

$$\begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_1(\mathbf{x}_2) & \cdots & \phi_1(\mathbf{x}_n) \\ \phi_2(\mathbf{x}_1) & \phi_2(\mathbf{x}_2) & \cdots & \phi_2(\mathbf{x}_n) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_n(\mathbf{x}_1) & \phi_n(\mathbf{x}_2) & \cdots & \phi_n(\mathbf{x}_n) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \mathcal{L}\phi_1(\mathbf{x}_c) \\ \mathcal{L}\phi_2(\mathbf{x}_c) \\ \vdots \\ \mathcal{L}\phi_n(\mathbf{x}_c) \end{bmatrix}$$

E. Larsson, DRWA15 (53 : 56)

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへぐ

RBF-QR

- Outline
- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF–QR methods
- RBF-QR and PDEs
- RBF-PUM

Is RBF-QR needed with RBF-FD?

Approximation of Δu with n = 56. Magenta lines are with added polynomial terms $p = 0, \dots, 3$.

- Scaled ε: No ill-conditioning, but saturation/stagnation. (See Kindelan et al.)
- Fixed ε : RBF-QR is needed.

► Added terms: Compromise with partial recovery. E. Larsson, DRWA15 (54:56)

RBF-QR

Outline

- Intro and motivation
- **RBF** limits
- Contour-Padé
- Expansions
- RBF-QR methods
- RBF-QR and PDEs
- RBF-PUM

Shallow water simulation

Tillenius, Larsson, Lehto, Flyer 2015

```
The shallow water equations

\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - f(\mathbf{x} \times \mathbf{u}) - g\nabla h,

\frac{\partial h}{\partial t} = -\nabla \cdot (h\mathbf{u})
```

Test cases

- Flow over an isolated mountain
- Highly non-linear wave

RBF–QR

- Outline Intro and motivation RBF limits Contour-Padé Expansions RBF-QR methods RBF-QR and PDEs
- RBF-PUM

Results shallow water

The highly non-linear wave with 612 346 nodes on the sphere.

Some problems with stability. Did not use RBF–QR. Would need adaptivity.