Summary of lecture 8 (I/II)

A **graphical model** is a probabilistic model where a graph is used to represent the CI structure between random variables.

We introduced basic concepts for **graphical models** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$,

1. a set of **vertices** \mathcal{V} (a.k.a. nodes) representing the random variables and
2. a set of **edges** \mathcal{E} (a.k.a. links or arcs) containing elements $(i, j) \in \mathcal{E}$ connecting a pair of nodes $(i, j) \in \mathcal{V}$ and thereby encoding the probabilistic relations between nodes.

$$
x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_N
$$

$$
y_1 \rightarrow y_2 \rightarrow \ldots \rightarrow y_N
$$

Summary of lecture 8 (II/II)

The set of parents to node j (pa_j) is defined as

$$
\text{pa}_j \triangleq \{ i \in \mathcal{V} \mid (i, j) \in \mathcal{E} \}.
$$

The directed graph describes how the joint distribution $p(x)$ *factors* into a product of factors $p(x_i \mid x_{\text{pa}_i})$ only depending on a subset of the variables,

$$
p(x_{\mathcal{V}}) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\text{pa}_i}).
$$

Hence, for the state space model on the previous slide, we have

$$
p(X, Y) = p(x_0) \prod_{t=1}^{N} p(x_t \mid x_{t-1}) \prod_{t=1}^{N} p(y_t \mid x_t).
$$
Ongoing research – message passing

Recall the motion capture problem from lecture 1.

Using message passing we can exploit the structure that is inherent in the problem.

Example – Gaussian mixture (I/II)

Suppose we have $x_{1:N}$ i.i.d. and distributed as

$$x_i \sim p(x_i|\pi_{1:K}, \mu_{1:K}, \Lambda_{1:K}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i; \mu_k, \Lambda_k^{-1})$$

for $i = 1, \ldots, N$.

In a Bayesian model, all the unknowns $\{\pi_{1:K}, \mu_{1:K}, \Lambda_{1:K}\}$ are modelled as random variables.

$$\pi_{1:K} \sim \text{Dir}(\pi_{1:K}|\alpha_0) \triangleq \prod_{k=1}^{K} \pi_k^{\alpha_0-1}$$

$$\mu_{1:K}, \Lambda_{1:K} \sim p(\mu_{1:K}, \Lambda_{1:K}) \triangleq \prod_{k=1}^{K} \mathcal{N}(\mu_k; m_0, (\beta_0 \Lambda_k)^{-1})W(\Lambda_k|W_0, \nu_0)$$

Example – Gaussian mixture (II/II)

Define the latent variables $z_n \triangleq [z_{n1}, \ldots, z_{nK}]^T$ for $n = 1, \ldots, N$ as we did in the construction used for EM and VB.

Then the joint density can be written as

$$p(x_{1:N}, z_{1:N}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{\gamma_{nk}} \mathcal{N}(x_n; \mu_k, \Lambda_k^{-1})^{\gamma_{nk}}$$

Undirected graphical model (MRF)

- Nodes and edges carry similar meanings.
- Conditional independence is determined by graphical separation.

$$A \perp B | C$$

- A more natural representation for some models, e.g., images.
- One must take special care while converting directed graphs to undirected ones.
Application – image de-noising (I/II)

Suppose we have a noisy image and want to remove the noise.

- Model the true pixel values as $x_{i,j}$.
- Model the measured image pixel values as $y_{i,j} = x_{i,j} + v_{i,j}$, $v_{i,j} \sim \mathcal{N}(0, \beta^2)$.
- Choose the energy functions as

 $E_y(x_{i,j}, y_{i,j}) = \frac{1}{\beta^2} (y_{i,j} - x_{i,j})^2$

 $E_x(x_{i_1,j_1}, x_{i_2,j_2}) = \min \left(\frac{1}{\alpha^2} (x_{i_1,j_1} - x_{i_2,j_2})^2, \gamma \right)$

Close connection to statistical physics

- The Hammersley-Clifford theorem has a physics interpretation when the functions $\psi_C(x_C)$ are non-zero everywhere.
- In this case, we can write

 $\psi_C(x_C) = \exp(-E(x_C))$

 where $E(\cdot)$ is called an energy function.
- The overall graph can then be considered as a lattice with a potential energy function described by $E(x_C)$.
- Finding the maximum of the density can then be considered as finding the point where the total potential energy is minimized.

 $p(x_{1:N}) = \frac{1}{Z} \prod_C \exp(-E(x_C)) = \frac{1}{Z} \exp \left(-\sum_C E(x_C) \right)$

- A local maximum then corresponds to an equilibrium.

Application – image de-noising (II/II)

- The density is then

 $-\log p(x_{1:N_x,1:N_y}, y_{1:N_x,1:N_y}) = \sum_{i,j} E_y(x_{i,j}, y_{i,j})$

 $+ E_x(x_{i,j}, x_{i+1,j+1}) + E_x(x_{i,j}, x_{i-1,j-1}) + E_x(x_{i,j}, x_{i-1,j+1}) + E_x(x_{i,j}, x_{i+1,j-1}) + C.$

- If the image is 8 bit grayscale, maximization requires the calc. of $256^{(N_x \times N_y)}$ different combinations.
- We instead maximize w.r.t. only one pixel keeping the others fixed.
- This is called iterative conditional modes (ICM).

Run example!
Conditional random field

A conditional random field (CRF) is a particular MRF where all the clique potentials are conditioned on input features:

\[p(x \mid y) = \frac{1}{Z(y)} \prod_{c \in C} \psi_c(x_c \mid y). \]

This opens up for the possibility of making the potentials (factors) data dependent.

CRFs do not model things that we observe, means that we are "saving resources".

Inference in graphical models

Inference in graphical models amounts to computing the posterior distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference algorithms.

Most inference algorithms can be expressed in terms of message passing algorithms, where local messages are propagated around the graph.

Road surface estimation

Aim: Estimate road surface using images from a stereo camera.

Solved using a CRF model and message passing.

Inference on a chain

Hence, inference on a graph consisting of a chain of nodes can be performed efficiently at a computational cost that is linear in the number of nodes.

The algorithm can be interpreted as passing messages around in the graph.

The generalization of this message passing idea to trees is referred to as the sum-product algorithm.

Definition (Tree): in an undirected graph a tree is defined as a graph where there is one, and only one, path between any pair of nodes.
Factor graphs

- Both directed and undirected graphs give a factorial representation for the joint density.
- Factor graphs make this factorization more explicit by adding nodes for each factor.
- Both directed and undirected graphs can be converted into factor graphs.

\[
p(x_{1:3}) = f_a(x_1, x_2)f_b(x_1, x_2) \times f_c(x_2, x_3)f_d(x_3)
\]

Inference in factor graphs (I/V)

- We have the joint density for the graph on the right given as

\[
p(x_{1:7}) \propto f_1(x_1)f_2(x_{1:3})f_3(x_2) \times f_4(x_2, x_7)f_5(x_{3:6})
\]

- When we have measurements of some variables, we might need the posteriors of some or all unobserved variables.

\[
p(x_1, x_3, x_4, x_5, x_7|x_2, x_6) = \frac{p(x_{1:7})}{p(x_2, x_6)} = \frac{p(x_{1:7})}{\sum_{x_1, x_3, x_4, x_5, x_7} p(x_{1:7})}
\]

Inference in factor graphs (II/V)

- Performing inference requires marginals.
- It is possible to calculate the marginals on a graph efficiently by passing local messages along the graph.
- Two interconnected types of messages are considered:
 - Messages from variable nodes to factor nodes
 \[
 \mu_{x_i \rightarrow f_j}(x_i) = \prod_{f \in \text{ne}(x_i) \setminus f_j} \mu_{f \rightarrow x_i}(x_i)
 \]
 - Messages from factor nodes to variable nodes
 \[
 \mu_{f_j \rightarrow x_i}(x_i) = \sum_{\bar{x}} f_j(x_i, \bar{x}) \prod_{x \in \text{ne}(f_j) \setminus x_i} \mu_{x_i \rightarrow f_j}(x_i)
 \]

Sum-product algorithm

1. Calculate messages from variable nodes to factor nodes

 \[
 \mu_{x_i \rightarrow f_j}(x_i) = \prod_{f \in \text{ne}(x_i) \setminus f_j} \mu_{f \rightarrow x_i}(x_i)
 \]

2. Calculate messages from factor nodes to variable nodes

 \[
 \mu_{f_j \rightarrow x_i}(x_i) = \sum_{\bar{x}} f_j(x_i, \bar{x}) \prod_{x \in \text{ne}(f_j) \setminus x_i} \mu_{x_i \rightarrow f_j}(x_i)
 \]

3. Iterate messages until convergence. (Different iteration schemes can be designed.)

4. After convergence, the marginals are calculated as

 \[
 p(x_i) \propto \prod_{f \in \text{ne}(x_i)} \mu_{f \rightarrow x_i}(x_i)
 \]
Inference in factor graphs (IV/V)

- The values in the observed nodes are just substituted into the factors and not integrated out.
- If the graph is a tree, the algorithm can calculate all the marginals by making
 - a forward pass from the root to the leaves.
 - a backward pass from the leaves to the root.
- The sum-product algorithm gives the exact results in a tree structured graph.
- The sum-product algorithm is equivalent to a Kalman smoother for linear Gaussian dynamical systems.
- (Chapter 13.3)

Inference in factor graphs (V/V)

- When the sum-product algorithm is applied to directed graphs without loops the resulting algorithm is sometimes referred to as belief propagation.
- In a graph with loops, the sum-product algorithm is not exact and actually might not converge.
- Despite this, it is applied to graphs with loops, which is called loopy belief propagation.

Even in this form, it has important applications in communications (decoding of error correcting codes).

SMC for general GMs

Inference in GMs does typically not allow for analytical solutions, confining us to various approximative methods.

Derived new sequential Monte Carlo (SMC) algorithms for inference in general GMs.

Delivers an unbiased estimate of the partition function (normalization constant), can be used within an MCMC sampler for learning.

SMC methods (e.g. particle filters and particle smoothers) can be used to approximate a sequence of probability distributions on a sequence of probability spaces of increasing dimension.

1 day tutorial at ICASSP (Shanghai) on Sunday.

PhD course available on SMC methods
http://user.it.uu.se/~thosc112/CIDS.html
SMC for general GMs

Constructing an artificial sequence of intermediate (auxiliary) target distributions in order to be able to employ an SMC sampler is a powerful (and quite possibly underutilized) idea.

Key idea: Perform and make use of a sequential decomposition of the graphical model.

Defines a sequence of intermediate (auxiliary) target distributions defined on an increasing sequence of probability spaces.

Target this sequence using SMC.

SMC for general GMs

The joint PDF of the set of random variables indexed by \mathcal{V}, $X_\mathcal{V} \triangleq \{x_1, \ldots, x_{|\mathcal{V}|}\}$

$$p(X_\mathcal{V}) = \frac{1}{Z} \prod_{C \in \mathcal{E}} \psi_C(X_C).$$

Sequential decomposition of the above factor graph (the target distributions are built up by adding factors at each iteration),

$$\gamma_1(X_{L_1}) \quad \gamma_2(X_{L_2})$$

Spatio-temporal example in 1056 dimensions

Detecting droughts in north America based on the measured precipitation.

Consider a standard squared lattice Gaussian MRF of size 10×10,

$$p(X_\mathcal{V}, Y_\mathcal{V}) \propto \prod_{i \in \mathcal{V}} e^{-\frac{1}{2}\beta^2 (x_i - y_i)^2} \prod_{(i,j) \in \mathcal{E}} e^{-\frac{1}{2}\beta^2 (x_i - x_j)^2}$$

Full details and a loopy, non-Gaussian and non-discrete PGM example,

A few concepts to summarize lecture 9

Markov random fields: (Undirected graphs, no directed arrows)
A graphical representation where conditional independence is given by graph separation.

Conditional random field (CRF): A CRF is a particular MRF where all the clique potentials are conditioned on input features.

Tree: In an undirected graph a tree is defined as a graph where there is one, and only one, path between any pair of nodes.

Factor graphs: An extension of directed and undirected graphs which makes the probabilistic factors explicit.

Belief propagation: A message passing algorithm for performing inference on graphical models, where local messages are propagated among the graph nodes.