Reinforcement learning

Lecture 2: Markov Decision Processes

Alexandre Proutiere, Sadegh Talebi, Jungseul Ok

KTH, The Royal Institute of Technology
Objectives of this lecture

- An example: the "longest path" problem (or the hot potato problem)
- MDP: A model for sequential decision selection problem under uncertainty
- 3 main classes of MDP
 1. Finite horizon MDP
 2. Infinite horizon MDP: the discounted reward case
 3. Infinite horizon MDP: the average reward case
Lecture 2: Outline

1. Introducing Markov Decision Processes
2. Finite-time horizon MDPs
3. Discounted reward MDPs
4. Expected average reward MDPs

For each class of MDPs: Optimality equations (Bellman), Algorithms to compute the optimal policy and their complexity.
1. **Introducing Markov Decision Processes**
2. Finite-time horizon MDPs
3. Discounted reward MDPs
4. Expected average reward MDPs

For each class of MDPs: Optimality equations (Bellman), Algorithms to compute the optimal policy and their complexity.
The Hot Potato Problem

A hot potato navigates in a graph. When the potato is at a node, the decision maker selects a neighbouring node, and the potato is sent to this node. On a pair of nodes \((i, j)\), the probability that the transmission is successful is \(\theta_{ij}\) (if not, the potato remains at node \(i\)). In \(T\) decisions, we aim at maximizing the number of successful transmissions. By definition, for any pair \(i, j\), \((\theta_{ij} = \theta_{ji} > 0)\) iff \((i \in \mathcal{N}(j))\). The \(\theta_{ij}\)'s are known.
What should we do when T is very large?
Move towards the pair of nodes $(i^*, j^*) \in \arg \max_{(i, j) \in G} \theta_{ij}$, and keep sending the potato back and forth from i to j ...

Now what if T is not that large?
The Hot Potato Problem

Model: collect a unit reward when moving from one node to another

Key observation: at any intermediate step, the optimal future decisions only depend on the current state (the position of the potato) and the remaining time before the horizon expires – the past does not matter!

\[T = 1. \] Starting at node \(i \), the optimal average reward and the corresponding decision are:

\[
\begin{align*}
V_1(i) &= \max_{j \in \mathcal{N}(i)} \theta_{ij} \\
i^* &\in \arg \max_{j \in \mathcal{N}(i)} \theta_{ij}
\end{align*}
\]
The Hot Potato Problem

\(T = 2 \). Starting at node \(i \), if node \(j \in \mathcal{N}(i) \) is selected, then:

- either the potato moves to \(j \) (w.p. \(\theta_{ij} \)), and we collect an average reward of \(1 + V_1(j) \)
- or the potato does not move (w.p. \(1 - \theta_{ij} \)), and we collect a reward of \(V_1(i) \)

Hence the optimal average reward and the corresponding first decision are:

\[
V_2(i) = \max_{j \in \mathcal{N}(i)} \theta_{ij} (1 + V_1(j)) + (1 - \theta_{ij}) V_1(i)
\]

\[
i^* \in \arg \max_{j \in \mathcal{N}(i)} \theta_{ij} (1 + V_1(j)) + (1 - \theta_{ij}) V_1(i)
\]
The Hot Potato Problem

$T = n$. Starting at node i, the optimal average reward and the corresponding first decision are:

\[
\begin{align*}
V_n(i) &= \max_{j \in \mathcal{N}(i)} \theta_{ij} (1 + V_{n-1}(j)) + (1 - \theta_{ij}) V_{n-1}(i) \\
i^* &\in \arg\max_{j \in \mathcal{N}(i)} \theta_{ij} (1 + V_{n-1}(j)) + (1 - \theta_{ij}) V_{n-1}(i)
\end{align*}
\]

The optimal policy is **Markovian**, and can be computed along with its average reward by solving **Bellman’s equation** using **Dynamic Programming**.
Markov Decision Processes

- Fully observable state and reward
- Known reward distribution and transition probabilities
- a_t function of $h_t = (s_0, a_0, r_0, \ldots, s_{t-1}, a_{t-1}, r_{t-1}, s_t)$
- Markovian dynamics: $\mathbb{P}[s_{t+1}|h_t, a_t] = p_t(s_{t+1}|s_t, a_t)$
- Reward at time t: $r_t(s_t, a_t)$
Assumptions

- State space S: finite, countably infinite, or a compact set of \mathbb{R}^d. Finite unless otherwise specified.
- Finite action space A: for any $s \in S$, the set of available actions is A_s. $A = \bigcup_{s \in S} A_s$
Finite Horizon

- Initial state s_0
- Finite time horizon T
 - Reward in the final state: $r_T(s)$ when the system ends up in state s
 - Objective: find a sequential decision policy π maximizing the expected reward up to time T:

$$R(s_0, a_0, s_1, \ldots, s_{T-1}, a_{T-1}, s_T) = \sum_{u=0}^{T-1} r_u(s_u, a_u) + r_T(s_T)$$

maximize over π $\mathbb{E}[R(s_0, a_0, s_1, \ldots, s_{T-1}, a_{T-1}, s_T)]$
Infinite Horizon

- Initial state s_0
- Infinite time horizon $T = \infty$
- Stationary transitions and rewards: $p(s'|s, a)$ and $r(s, a)$
 - Objective 1: maximize the discounted expected reward ($\lambda \in (0, 1)$)
 $$\lim_{T \to \infty} \inf \mathbb{E} \left[\sum_{u=0}^{T} \lambda^u r(s^\pi_u, a^\pi_u) \right]$$
 - Objective 2: maximize the ergodic expected reward
 $$\lim_{T \to \infty} \inf \mathbb{E} \left[\frac{1}{T} \sum_{u=0}^{T-1} r(s^\pi_u, a^\pi_u) \right]$$
A Markov Decision Process is defined through:

\[\{ T, S, (A_s, p_t(\cdot|s, a), r_t(s, a), 0 \leq t \leq T, s \in S, a \in A_s) \} \]

Three types of objectives:
1. \(T \) finite – expected total reward
2. \(T = \infty \) – expected discounted reward
3. \(T = \infty \) – expected ergodic reward
• History up to time t: $h_t = (s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t) \in (S \times A)^t \times S$

• A priori, the decision selected at time t could depend on the entire history

• The action selected could be random!

• We distinguish different types of policies
 - History-dependent Randomised: HR
 - History-dependent Deterministic: HD
 - Markov Randomised: MR
 - Markov Deterministic: MD
Decision Rules or Policies

\[\pi = (\pi_t, 0 \leq t \leq T) \]

- History-dependent Randomised: \(\pi_t : (S \times A)^t \times S \rightarrow \mathcal{P}(A_{st}) \)

 \[q_{\pi_t}(h_t)(a) : \text{probability to select action } a \text{ at time } t \]

- History-dependent Deterministic: \(\pi_t : (S \times A)^t \times S \rightarrow A_{st} \)

 \[\pi_t(h_t) : \text{action selected at time } t \]

- Markov Randomised: \(\pi_t : S \rightarrow \mathcal{P}(A_{st}) \)

 \[q_{\pi_t}(s_t)(a) : \text{probability to select action } a \text{ at time } t \]

- Markov Deterministic: \(\pi_t : S \rightarrow A_{st} \)

 \[\pi_t(s_t) : \text{action selected at time } t \]

Observe that:

\[MD \subset MR \subset HR \]
\[MD \subset HD \subset HR \]

Markovian deterministic policies are most often optimal — forget about more complicated history-based policies.
MDP with Discounted Expected Reward

\[
\max_{\pi} \lim_{T \to \infty} \mathbb{E}\left[\sum_{u=0}^{T} \lambda^u r_u(s_u^\pi, a_u^\pi) \right]
\]

Two interpretations:

- **Interest rate.** The value of a unit reward decreases with time at geometric rate \(\lambda \)

- **Random time horizon.** the decision maker has a time horizon \(T \) geometrically distributed \(\mathbb{P}[T = k] = (1 - \lambda)\lambda^k; \mathbb{E}[T] = 1/(1 - \lambda) \)

Why such an objective? How should we choose \(\lambda \)?

- Life is short!

- Non-stationary environments. Select \(\lambda \) such that \(1 \ll 1/(1 - \lambda) \) and \(1/(1 - \lambda) \ll \) coherence time
Lecture 2: Outline

1. Introducing Markov Decision Processes
2. **Finite-time horizon MDPs**
3. Discounted reward MDPs
4. Expected average reward MDPs

For each class of MDPs: Optimality equations (Bellman), Algorithms to compute the optimal policy and their complexity.
Finite-horizon MDP

- State space: \(S \), actions available in state \(s \in S \), \(A_s \) (\(A \cup_{s \in S} A_s \))
- Transition probabilities at time \(t \): \(p_t(s'|s, a) \)
- Reward at time \(t \): \(r_t(a, s) \) and at time \(T \): \(r_T(s) \)
- Objective: find a policy \(\pi \in MD \) maximising (over all possible policies)

\[
\mathbb{E} \left[\sum_{u=0}^{T-1} r_u(s_u^\pi, a_u^\pi) + r_T(s_T^\pi) \right]
\]
The Value Function

• The value function is the maximal expected reward depending on the time horizon T and the initial state s:

$$V^*(s) = \sup_{\pi \in MD} V^\pi_T(s)$$

where $V^\pi_T(s)$ is the average reward achieved under π with initial state s, i.e.,

$$V^\pi_T(s) = \mathbb{E}\left[\sum_{u=0}^{T-1} r_u(s_0^\pi, a_0^\pi) + r_T(s_T^\pi) | s_0^\pi = s\right]$$

$$= \mathbb{E}_s \left[\sum_{u=0}^{T-1} r_u(s_u^\pi, a_u^\pi) + r_T(s_T^\pi)\right]$$

• The "sup" is achieved – finite action space.
Average reward under $\pi \in MD$

We wish to compute $\forall s \in S$: $V_T^\pi(s) = \mathbb{E}_s \left[\sum_{u=0}^{T-1} r_u(s^\pi_u, a^\pi_u) + r_T(s^\pi_T) \right]$

Average reward starting at time t given some given current state s_t:

$$u_t^\pi(s_t) = \mathbb{E} \left[\sum_{u=t}^{T-1} r_u(s^\pi_u, a^\pi_u) + r_T(s^\pi_T) | s_t \right]$$

- Start with: $u_T^\pi(s_T) = r_T(s_T)$ for all s_T
- Backward recursion to compute u_{t-1}^π from u_t^π
Average reward under $\pi \in MD$

- At time $t - 1$, for all s_{t-1}
 - a is chosen
 - the reward $r_{t-1}(s_{t-1}, a)$ is collected
 - the state becomes $s_t = j$ with probability $p_{t-1}(j|s_{t-1}, a)$
 - the average reward until T is $u_t^\pi(s_t)$

Hence:

$$u_{t-1}^\pi(s_{t-1}) = r_{t-1}(s_{t-1}, a) + \sum_{j \in S} p_{t-1}(j|s_{t-1}, a)u_t^\pi(j)$$

- We obtain: $V_T^\pi(s) = u_0^\pi(s)$ for any s
Bellman’s equation provides a recursive way of computing the value function and the optimal policy. Maximal average reward starting at time t: $u^*_t(s_t) = \sup_{\pi \in MD} u^\pi_t(s_t)$, estimated by $u^B_t(s_t)$ (B stands for 'Bellman')

1. For all s_T, $u^B_T(s_T) = r_T(s_T)$
2. For all $t \in \{T, T-1, \ldots, 1\}$, for all s_{t-1},

$$u^B_{t-1}(s_{t-1}) = \max_{a \in A_{s_{t-1}}} \left[r_{t-1}(s_{t-1}, a) + \sum_{j \in S} p_{t-1}(j|s_{t-1}, a) u^B_t(j) \right]$$

Theorem. $u^B = u^*$
Finite-horizon MDP: Summary

Bellman’s equations: For all $s_T, u_T^*(s_T) = r_T(s_T)$

For all $t = T - 1, T - 2, \ldots, 0$

$$u^*_t(s_t) = \max_{a \in A_{s_t}} \left[r_t(s_t, a) + \sum_{j \in S} p_t(j|s_t, a) u^*_{t+1}(s_t, a, j) \right]$$

$Q_t(s_t, a)$ optimal reward from t if a selected

An optimal policy π is obtained by selecting $\pi_t(s_t)$ at time t such that

$$Q_t(s_t, \pi_t(s_t)) = \max_{a \in A_{s_t}} Q_t(s_t, a)$$

Solving Bellman’s equation requires $\Theta(S^2 AT)$ operations
Richard Bellman

1920 - 1984
American applied mathematician

Introduced **Dynamic Programming** (DP) as a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions.
Bellman’s breakthrough

Decision tree with depth T: it has $A^T S^{T+1}$ leaves (complexity of optimising over history-dependent policies)

Solving Bellman’s equation for optimal MD policies requires $S^2 A T$ operations!
Example: Max-weight routing

Find the max-weight path from the source 1 to the destination 8
Example: Max-weight routing, DP formulation

- States: positions 1, 2, 3, 4, 5, 6, 7, 8
- Actions: the possible next state, e.g. $A_3 = \{5, 7\}$
- Rewards: edge weights, e.g. if edge $(3, 5)$ selected, reward $w_{35} = 5$
- Transitions: deterministic, e.g. $p(5|5, 3) = 1$
- Time horizon: T greater than the maximum path length, e.g. $T = 3$
- Max path weight starting at state s: $u^*(s)$
- Bellman equations: $u^*(8) = 0$, $A_8 = \emptyset$, and for $s \neq 8$,

$$u^*(s) = \max_{j \in A_s} [w_{sj} + u^*(j)]$$
Example: Max-weight routing, solution

\[
\begin{align*}
 u^*(8) &= 0 \\
 u^*(5) &= 1 \\
 u^*(2) &= 7 \\
 u^*(1) &= 12 \\
 \pi^*(5) &= 8 \\
 \pi^*(2) &= 6 \\
 \pi^*(1) &= 4 \\
 u^*(6) &= 2 \\
 \pi^*(6) &= 8 \\
 \pi^*(3) &= 6 \\
 u^*(3) &= 8 \\
 u^*(7) &= 6 \\
 \pi^*(7) &= 8 \\
 \pi^*(4) &= 7 \\
 u^*(4) &= 8
\end{align*}
\]
1. Introducing Markov Decision Processes
2. Finite-time horizon MDPs
3. Discounted reward MDPs
4. Expected average reward MDPs

For each class of MDPs: Optimality equations (Bellman), Algorithms to compute the optimal policy and their complexity.
Infinite-horizon discounted MDP

- State space: S finite or countably infinite
- Actions available in state $s \in S$, A_s ($A = \bigcup_{s \in S} A_s$)
- Stationary transition probabilities $p(s'|s, a)$ and rewards $r(a, s)$, uniformly bounded: $\forall a, s$, $|r(s, a)| \leq 1$
- Objective: for a given discount factor $\lambda \in [0, 1)$, find a policy $\pi \in MD$ maximising (over all possible policies)

$$\lim_{T \to \infty} \mathbb{E} \left[\sum_{u=0}^{T} \lambda^u r(s_u, a_u^\pi) \right]$$
The Value Function

- The value function is the maximal expected reward depending on the discount factor λ and the initial state s:

$$V^*_\lambda(s) = \sup_{\pi \in MD} V^\pi_\lambda(s)$$

where $V^\pi_\lambda(s)$ is the average reward achieved under π with initial state s, i.e.,

$$V^\pi_\lambda(s) = \mathbb{E}\left[\sum_{u=0}^{\infty} \lambda^u r(s^\pi_u, a^\pi_u) | s^\pi_0 = s\right] = \mathbb{E}_s \left[\sum_{u=0}^{\infty} \lambda^u r(s^\pi_u, a^\pi_u)\right]$$

- The "sup" is achieved – finite action space
Can we compute the average discounted reward $V_{\lambda}^\pi(s)$ under π? Through recursive arguments like in the finite horizon case?

Let $\pi = (\pi_0, \pi_1, \pi_2, \ldots) \in MD$. Average reward starting at time t in state s_t:

$$u_t^\pi(s_t) = \mathbb{E} \left[\sum_{t=u}^{\infty} \lambda^{u-t} r_u(s_u^\pi, a_u^\pi) | s_t \right]$$

Backward recursion to compute u_{t-1}^π from u_t^π.
Average reward under $\pi \in MD$

- At time $t - 1$
 - $a = \pi_{t-1}(s_{t-1})$ is chosen
 - the reward $r(s_{t-1}, a)$ is collected
 - the state becomes $s_t = j$ with probability $p(j|s_{t-1}, a)$
 - the average reward from t is $\lambda u_t^\pi(s_t)$

Hence:

$$u_{t-1}^\pi(s_{t-1}) = r(s_{t-1}, a) + \lambda \sum_{j \in S} p(j|s_{t-1}, a) u_t^\pi(j)$$

- Fine ... but we can not initialise the backward induction!
Notations

- \mathcal{V} set of bounded functions from S to \mathbb{R}, with the norm defined as:

 $\forall V \in \mathcal{V}, \|V\| = \sup_{s \in S} |V(s)| < \infty$

- Let $MD_1 := \{\pi_0 : S \rightarrow A\}$ denote the set of one-step deterministic decision policies

- Define for any $\pi_0 \in MD_1$

 $r_{\pi_0}(s) := r(s, \pi_0(s)), \ p_{\pi_0}(j|s) := p(j|s, \pi_0(s))$

 P_{π_0}: the matrix with entries $p_{\pi_0}(j|s)$
With these notations, we have for all \(V \in \mathcal{V} \) and \(\pi_0 : S \rightarrow A \),
\[
r_{\pi_0} + P_{\pi_0} V \in \mathcal{V} \quad \text{with} \quad (r_{\pi_0} + \lambda P_{\pi_0} V)(s) = r(s, \pi_0(s)) + \lambda \sum_j p(j|s, \pi_0(s)) V(j)
\]

We can also express the average reward of a policy \(\pi = (\pi_0, \pi_1, \ldots) \) in \(MD \) in a compact form as an element of \(\mathcal{V} \):
\[
V^\pi = r_{\pi_0} + \lambda P_{\pi_0} r_{\pi_1} + \lambda^2 P_{\pi_0} P_{\pi_1} r_{\pi_2} + \ldots
\]
\[
= r_{\pi_0} + \sum_{t=0}^{\infty} \lambda^t P^t_{\pi} r_{\pi_{t+1}}
\]
where \(P^t_{\pi} := P_{\pi_0} \ldots P_{\pi_t} \)

Note: we drop the subscript \(\lambda \) from now on
Stationary policies

A stationary policy \(\pi = (\pi_0, \pi_1, \ldots) \) is a policy in MD applying the same one-step decision every step, i.e., \(\pi_t = \pi_0 \) for all \(t \)

Under such a policy, the average reward satisfies:

\[
V^\pi = r_{\pi_0} + \lambda P_{\pi_0} V^\pi
\]

Indeed since \(\pi_0 = \pi_1 = \pi_2 = \ldots \),

\[
V^\pi = r_{\pi_0} + \lambda P_{\pi_0} (r_{\pi_1} + \lambda P_{\pi_1} r_{\pi_2} + \ldots) \\
= r_{\pi_0} + \lambda P_{\pi_0} (r_{\pi_0} + \lambda P_{\pi_0} r_{\pi_1} + \ldots) \\
= V^\pi
\]

\(P_{\pi_0} \) is a stochastic matrix, and hence the linear operator \(I - \lambda P_{\pi_0} \) is a contraction\(^1\): \(\| I - \lambda P_{\pi_0} \| < 1 \). Thus \(V^\pi = (I - \lambda P_{\pi_0})^{-1} r_{\pi_0} \).

\(^1P : \mathcal{V} \rightarrow \mathcal{V} \) has norm \(\| P \| = \sup_{V \in \mathcal{V}} \frac{\| H(V) \|}{\| V \|} \)
Bellman’s equation

• For a deterministic stationary policy π:

$$V^\pi(s) = r(s, \pi_0(s)) + \lambda \sum_j p(j|s, \pi_0(s))V^\pi(j)$$

• Bellman’s equation obtained by selecting the best action:

$$\forall s \in S, V^B(s) = \max_{a \in A_s} \left[r(s, a) + \lambda \sum_j p(j|s, a)V^B(j) \right]$$

• (Non-linear) Bellman operator $\mathcal{L} : \mathcal{V} \rightarrow \mathcal{V}$ defined by:

 for all $V \in \mathcal{V}$, $\mathcal{L}(V) = \sup_{\pi_0 \in MD_1} (r_{\pi_0} + \lambda P_{\pi_0} V)$ or equivalently by

$$\forall s \in S, \mathcal{L}(V)(s) = \max_{a \in A_s} \left[r(s, a) + \lambda \sum_j p(j|s, a)V(j) \right]$$
Bellman’s equation

V^B is a fixed point of \mathcal{L}, i.e., $\mathcal{L}(V^B) = V^B$

$\iff \forall s \in S, V^B(s) = \sup_{a \in A_s} \left[r(s, a) + \lambda \sum_j p(j|s, a) V^B(j) \right]$

Theorem. The operator \mathcal{L} is a contraction mapping of \mathcal{V}. Thus it has a unique fixed point V^B, solution of Bellman’s equation. Furthermore:

$V^B = V^* = \sup_{\pi \in MD} V^\pi$
Bellman’s equations: For all s,

$$V^*(s) = \max_{a \in A_s} \left[r(s, a) + \lambda \sum_{j \in S} p(j|s, a)V^*(j) \right]$$

$Q(s,a)$ optimal reward from state s if a selected

or equivalently $V^* = \mathcal{L}(V^*)$.

An optimal policy π is stationary $\pi = (\pi_0, \pi_0, \ldots)$ where $\pi_0 \in MD_1$ is defined by: for any s,

$$\pi_0(s) = \arg \max_{a \in A_s} Q(s, a)$$

Q is referred to as the Q-function.

It remains to solve Bellman’s equations ...
To find the optimal policy, we need to solve Bellman’s equations

- A fixed point iteration problem
 1. Value iteration
 2. Policy iteration

- Other methods, e.g. Linear Programming
The VI algorithm

Parameter. Precision ϵ

1. **Initialization.** Select a value function $V_0 \in \mathcal{V}$, $n = 0$, $\delta \gg 1$

2. **Value improvement.** While $(\delta > \frac{\epsilon(1-\lambda)}{\lambda})$ do

 (a) $V_{n+1} = \mathcal{L}(V_n)$, i.e., for all $s \in S$

 $V_{n+1}(s) = \sup_{a \in A_s} (r(s, a) + \sum_j p(j|s, a)V_n(j))$

 (b) $\delta = \|V_{n+1} - V_n\|$, $n \leftarrow n + 1$

3. **Output.** $\pi = (\pi_0, \pi_0, \ldots)$ with

 \[\forall s \in S, \pi_0(s) \in \arg \max_{a \in A_s} (r(s, a) + \lambda \sum_j p(j|s, a)V_n(j)) \]
The VI algorithm: Properties

- VI converges since \mathcal{L} is a contraction mapping
- When it stops, VI returns an ϵ-optimal policy
- Complexity
 - The VI algorithm requires $\Theta(S^2 A)$ (floating) operations per iteration
 - Number of iterations?
The Howard’s PI algorithm

1. **Initialization.** Select a one-step policy π_0, $n = 0$

2. **Policy evaluation.** Evaluate the value V^π_n of $\pi = (\pi_n, \pi_n, \ldots)$ by solving:

 $$\forall s \in S, V^\pi_n(s) = r(s, \pi_n(s)) + \lambda \sum_j p(j|s, \pi_n(s)) V^\pi_n(j)$$

3. **Policy improvement.** Update the one-step policy:

 $$\forall s \in S, \pi_{n+1}(s) = \arg \max_a (r(s, a) + \lambda \sum_j p(j|s, a) V^\pi_n(j))$$

4. **Stopping criterion.** If $\pi_{n+1} = \pi_n$, return π_n.
 Otherwise $n := n + 1$, and go to 2.
The Simplex-PI Algorithm

1. **Initialization.** Select a one-step policy π_0, $n = 0$

2. **Policy evaluation.** Evaluate the value V^π_n of $\pi = (\pi_n, \pi_n, \ldots)$ by solving: $V^\pi_n = r^\pi_n + \lambda P^\pi_n V^\pi_n$

\[
\forall s \in S, \quad V(s) = \max_{a \in A_s} (r(s, a) + \lambda \sum_j p(j|s, a)V^\pi_n(j))
\]

$s_0 \in \arg \max_{s \in S} (V(s) - V^\pi_n(s))$

3. **Policy improvement.** Update the one-step policy:

$\forall s \neq s_0, \pi_{n+1}(s) = \pi_n(s)$ and

$\pi_{n+1}(s_0) = \arg \max_{a \in A_{s_0}} (r(s_0, a) + \lambda \sum_j p(j|s_0, a)V^\pi_n(j))$

4. **Stopping criterion.** If $\pi_{n+1} = \pi_n$, return π_n.
Otherwise $n := n + 1$, and go to 2.
The PI algorithm: Properties

- Under the PI algorithm, V^π_n is increasing in n
- When S and A are finite, PI terminates with an optimal policy
- Complexity
 - In each iteration, the policy evaluation can be done in $\Theta(S^\omega)$ (floating) operations, and the policy improvement requires $\Theta(S^2A)$ (floating) operations
 - $\Theta(S^\omega)$ is the complexity of inverting a $S \times S$ matrix
 - Number of iterations?
Numerical Experiments

Four examples:

1. The VI and PI algorithms are fast for randomly generated MDPs
2. PI: the number of iterations could grow linearly with S
3. VI: the number of iterations could grow exponentially with A
4. VI: the number of iterations could scale as $\log\left(\frac{1}{1-\lambda}\right) \frac{1}{1-\lambda}$
1. Randomly generated MDPs

Convergence time of values for VI ($\epsilon = 0.01$), for randomly generated MDPs and various discount factors
1. Randomly generated MDPs

Convergence time of policies for VI and PI variants, for randomly generated MDPs and various discount factors
2. The PI Algorithm

\[S = \{0, \ldots, M\}, \ A_s = \{0, 1\}, \ \forall s \]
\[p(s - 1|s, 0) = 1, \ p(s + 1|s, 1) = 1 \]
\[r(s, 0) = -1, \ r(s, 1) = -2, \ \forall s = 1, \ldots, M - 2 \]
\[r(M - 1, 0) = -1, \ r(M - 1, 1) = 2M \]
\[p(0|0, \cdot) = 1 = p(M|M, \cdot), \ r(0, \cdot) = 0 = r(M, \cdot) \]

Optimal policy: \(\pi^*(s) = 1, \ \forall s \neq 0, M, \ \pi^*(0) = 0 = \pi^*(M) \).
Policy Iteration with $\pi_0(s) = 0$, $\forall s \neq M - 1$, $\pi_0(M - 1) = 1$

At iteration n, π_n differs from π_{n-1} in state $s = M - n - 1$, flipping the optimal action from left to right. Thus, it takes $M - 1$ steps so that in all states $\pi_n(s) = 1$.

If λ is very close to 1, PI could take $M - 1$ steps to compute the optimal policy.
2. The PI Algorithm

![Graph showing the number of iterations for different values of \(\lambda \) vs. the number of states.](image)

- \(\lambda = 0.7 \)
- \(\lambda = 0.8 \)
- \(\lambda = 0.9 \)
- \(\lambda = 0.93 \)
- \(\lambda = 0.99 \)
3. The VI Algorithm

\[S = \{1, 2, 3\}, \ A_1 = \{0, 1\}, \ A_2 = \{0\} = A_3 \]
\[p(2|1, 0) = 1, \ p(3|1, 1) = 1, \ p(2|2, 0) = 1 = p(3|3, 0) \]
\[r(1, 0) = 0, \ r(1, 1) = \frac{\lambda^2}{\lambda - 1}, \ r(2, 0) = -1, \ r(3, 0) = 0 \]

The expected reward of action 1 from state 0 is \(\frac{\lambda}{\lambda - 1} \), which is smaller that \(\frac{\lambda^2}{\lambda - 1} \). Hence the optimal policy chooses action 2 in state 0.
3. The VI Algorithm

VI equations with $V_0(s) = 0$ for all s:

\[
V_n(0) = \max \left[\lambda V_{n-1}(1), \frac{\lambda^2}{\lambda - 1} + \lambda V_{n-1}(2) \right]
\]

\[
V_n(1) = -1 + \lambda V_{n-1}(1)
\]

\[
V_n(2) = 0 + \lambda V_{n-1}(2)
\]

so that

\[
V_n(1) = \frac{1 - \lambda^n}{1 - \lambda}, \quad V_n(2) = 0
\]

Hence, it takes N iterations for VI to identify the optimal action at state 1, where N satisfies

\[
\frac{\lambda(1 - \lambda^{N-1})}{\lambda - 1} < \frac{\lambda^2}{\lambda - 1}
\]

hence $N > \frac{\log(1-\lambda)}{\log \lambda} + 1$.
4. The VI Algorithm (bis)

\[S = \{1, 2, 3\}, \ A_1 = \{0, 1, \ldots, k\}, \ A_2 = \{0\} = A_3 \]
\[p(2|1, i) = 1, \ \forall i = 1, \ldots, k, \ p(3|1, 0) = 1 \]
\[p(2|2, 0) = 1 = p(3|3, 0) \]
\[r(1, 0) = r(2, 0) = 0, \ r(3, 0) = 1, \ r(1, i) = \frac{\lambda}{1-\lambda} (1 - \exp(-M_i)) \]
where \(0 < M_1 < \ldots < M_k\)

If in state 1, choosing action \(i \geq 1\) leads to 2 and provides a total reward \(r(1, i)\)
If in state 0, choosing action 0 leads to 3 and provides a total reward \(\frac{\lambda}{1-\lambda}\)
Hence the optimal policy consists in selecting 0 in state 1.
4. The VI Algorithm (bis)

Value Iteration with $V_0 = 0$:
For all $n \geq 1$, we have:

$$V_n(2) = 0, \quad V_n(3) = \frac{1 - \lambda^n}{1 - \lambda}$$

$$V_n(1) = \max \left[\frac{\lambda}{1 - \lambda} (1 - \exp(-M_k)), \frac{\lambda}{1 - \lambda} (1 - \lambda^{n-1}) \right]$$

Hence the policy computed from V_n is optimal if and only if:

$$n \geq 1 + \frac{M_k}{-\log(\lambda)}$$

Choose $M_i = 2^i$ for all i. $k + 3$ actions, and required number of iterations $1 + \frac{2^k}{-\log(\lambda)}$
The number of arithmetic operations needed to compute an optimal policy as a function $\lambda, S, A,$ and B, where B denotes the number of bits required to encode each entry of the components of the MDP $(r(s, a), p(j|s, a), \lambda)$.

- An algorithm for computing an optimal policy is **polynomial** if for all MDP instances, the required number of arithmetic operations for computing an optimal policy is bounded by a polynomial in S, A, and B.

- An algorithm for computing an optimal policy is **strongly polynomial** if for all MDP instances, the required number of arithmetic operations for computing an optimal policy is bounded by a polynomial in S and A.
Value Iteration

Assumptions: Rational transition probabilities and discount factor. Integer rewards. Encoding each of these values with $B \sim \log(\delta)$ bits (e.g. $\delta \lambda$, $\delta p(j \mid s, a)$ are integers, and $|r(s, a)| \leq \delta$)

Theorem. *The number of iterations n required to get an optimal policy under the VI algorithm, i.e.,

$$\forall s, \pi^*_0(s) \in \arg \max_{a \in A_s} (r(s, a) + \lambda \sum_j p(j \mid s, a) V_n(j))$$

satisfies:

$$n \leq \left((2S + 3)B + S \log(S) + \log\left(\frac{1}{1 - \lambda}\right) + 2 \right) \frac{1}{-\log(\lambda)}$$*
Proof.

Step 1. After \(n = \log(\epsilon/\|V^*\|)/\log(\lambda) \) iterations the error \(\|V_n - V^*\| \) is less than \(\epsilon \). Also \(\|V^*\| \leq \delta/(1 - \lambda) \)

Step 2. If \(\|V_n - V^*\| \leq 1/(2\delta^2 S^2 + 2S^2) \), then we get an optimal policy after \(n \) iterations.

Each iteration of VI requires \(O(AS^2) \) operations, and hence the VI algorithm is polynomial under our assumptions.

In view of Example 4, the VI algorithm is not strongly polynomial.
Theorem. The number of iterations n required to get an optimal policy under Howard’s PI satisfies:

$$n \leq (A - S)\left\lceil \frac{1}{1 - \lambda} \log\left(\frac{1}{1 - \lambda}\right) \right\rceil = \mathcal{O}\left(\frac{A}{1 - \lambda} \log\left(\frac{1}{1 - \lambda}\right)\right)$$

Proof. Assume that π_0 is not optimal. For all n, such that $n \geq \left\lceil \frac{1}{1 - \lambda} \log\left(\frac{1}{1 - \lambda}\right) \right\rceil$, one of the sub-optimal action of π_0 is eliminated in π_n.
Theorem. The number of iterations n required to get an optimal policy under Simplex-PI satisfies:

$$n \leq S(A - S) \left(1 + \frac{2}{1 - \lambda} \log\left(\frac{1}{1 - \lambda}\right)\right) = \mathcal{O}\left(\frac{AS}{1 - \lambda} \log\left(\frac{1}{1 - \lambda}\right)\right)$$

Theorem. For deterministic MDPs, the Simplex-PI terminates in $\mathcal{O}(S^3 A^2 \log^2(S'))$ iterations.
Policy Iteration

- Each iteration of the PI algorithm requires a polynomial number of operations, i.e., $O(S^\omega)$
- For fixed λ, the Howard’s and Simplex PI algorithms are strongly polynomial
- The best known λ-independent upper bound on the number of required operations for Howard’s PI is $\Theta(A_{max}^S/S)$ where $A_{max} = \max_s A_s$ (not very far from enumerating all possible policies!)
Lecture 2: Outline

1. Introducing Markov Decision Processes
2. Finite-time horizon MDPs
3. Discounted reward MDPs
4. **Expected average reward MDPs**

For each class of MDPs: Optimality equations (Bellman), Algorithms to compute the optimal policy and their complexity.
Expected average reward MDP

- State space: \(S \) finite
- Actions available in state \(s \in S \), \(A_s (A = \bigcup_{s \in S} A_s) \)
- Stationary transition probabilities \(p(s' | a, s) \) and rewards \(r(s, a) \), uniformly bounded: \(\forall a, s, \ |r(s, a)| \leq 1 \)
- Objective: find a policy \(\pi \in MD \) maximising (over all possible policies)

\[
\lim_{T \to \infty} \inf \frac{1}{T} \mathbb{E} \left[\sum_{u=0}^{T-1} r(s_u^\pi, a_u^\pi) \right]
\]
A stationary policy \(\pi = (\pi_0, \pi_1, \ldots) \) is a policy in MD applying the same one-step decision every step, i.e., \(\pi_t = \pi_0 \) for all \(t \).

Total reward up to time \(T \):

\[
v_T^\pi(s) = E_s \left[\sum_{u=0}^{T-1} r(s_u^\pi, a_u^\pi) \right] = \sum_{u=0}^{T-1} P_{\pi_0}^u r_{\pi_0}(s)
\]

Gain: average reward per period in steady state

\[
g^\pi(s) = \lim_{T \to \infty} \frac{1}{T} v_T^\pi(s)
\]

The gain is constant over communication classes of the induced Markov chain.
Bias of stationary policies

- The bias $h^\pi : S \to \mathbb{R}$ represents the asymptotic difference in total reward that results from starting the process in different states.

$$h^\pi(s) = \mathbb{E}_s \left[\sum_{u=0}^{\infty} (r(s^\pi_u, a^\pi_u) - g(s^\pi_u)) \right]$$

- h^π referred to as the relative value

$$h^\pi(j) - h^\pi(k) = \lim_{T \to \infty} (v^\pi_T(j) - v^\pi_T(k))$$

- Taylor expansion interpretation:

$$v^\pi_T(s) = T g^\pi(s) + h^\pi(s) + o(1)$$
Bellman’s equation

- For a deterministic stationary policy π:

$$V^\pi(s) = r(s, \pi_0(s)) + \sum_j p(j|s, \pi_0(s))V^\pi(j)$$

- Bellman’s equation obtained by selecting the best action:

$$\forall s \in S, V^B(s) = \max_{a \in A_s} \left[r(s, a) + \sum_j p(j|s, a)V^B(j) \right]$$

- (Non-linear) **Bellman operator** $\mathcal{L} : \mathcal{V} \to \mathcal{V}$ defined by:
 for all $V \in \mathcal{V}$, $\mathcal{L}(V) = \sup_{\pi_0 \in MD_1} (r_{\pi_0} + P_{\pi_0}V)$ or equivalently by

$$\forall s \in S, \mathcal{L}(V)(s) = \max_{a \in A_s} \left[r(s, a) + \sum_j p(j|s, a)V(j) \right]$$
Bellman’s equation

Unichain MDP: every stationary policy induces an irreducible Markov chain

There exist a unique gain g^* and a bias function $h^* : S \rightarrow \mathbb{R}$ such that: for any s,

$$\max_{a \in A_s} \left\{ r(s, a) - g^* + \sum_{j \in S} p(j \mid s, a) h^*(j) - h^*(s) \right\} = 0$$

An optimal policy π is stationary $\pi = (\pi_0, \pi_0, \ldots)$ where $\pi_0 \in MD_1$ and defined by: for any s,

$$\pi_0(s) = \arg \max_{a \in A_s} (r(s, a) + \sum_{j \in S} p(j \mid s, a) h^*(j))$$
To find the optimal policy, we need to solve Bellman’s equations. Examples of algorithms converging under some specific assumptions (refer to Sections 8.5 and 8.6 in Puterman’s book for details)

- Value iteration
- Relative value iteration
- Policy iteration
Main reference. All precise statements and proofs (and much more) can be found in:

Complexity of solving MDPs

