Deep Learning PhD course: Hand-in assignment 1A

Niklas Wahlström

March 25, 2019

Due: 12th of April 2019, 23:59

In the first hand-in assignments 1A and 1B, we will arrive to the full implementation of a neural network. In this hand-in assignment we will implement the logistic regression model. Logistic regression can be seen as a one-layer neural network for binary classification. Hence, this code will serve as a good base to solve the full network implementation in hand-in assignment 1B.

1 Logistic regression with gradient descent

Consider a dataset \(\{x_i, y_i\}_{i=1}^n \). Each input is a vector \(x_i = [x_{i1}, \ldots, x_{ip}]^T \) and each output \(y_i \in \{0, 1\} \) depending on which of the two classes data point \(i \) belongs to. We want to find a model for the class-1 probability \(p_i = \Pr(y_i = 1|x_i) \) using logistic regression. For one data point \(i \in \{1, \ldots, n\} \), the logistic regression model can be described as

\[
z_i = \sum_{j=1}^{p} w_j x_{ij} + b = w^T x_i + b, \tag{1a}
\]

\[
p_i = \text{sigmoid}(z_i) = \frac{1}{1 + e^{-z_i}}, \tag{1b}
\]

where the weight vector \(w = [w_1, \ldots, w_p]^T \) and the offset \(b \) are the parameters. The cost \(J \) is computed by summing the following loss over all training data points

\[
L_i = -y_i \ln(p_i) - (1 - y_i) \ln(1 - p_i), \tag{1c}
\]

\[
J = \frac{1}{n} \sum_{i=1}^{n} L_i. \tag{1d}
\]

To train this model, we need access to the gradient of the cost function with respect to the model parameters, i.e. \(\frac{\partial J}{\partial w_1}, \ldots, \frac{\partial J}{\partial w_p} \) and \(\frac{\partial J}{\partial b} \), which you will derive below.

Exercise 1.1 Based on the model in (1), derive expressions for

\[
\frac{dJ}{db} \quad \text{and} \quad \frac{dJ}{dw_j} \quad \text{in terms of} \quad \frac{\partial J}{\partial z_i}, \quad \frac{dz_i}{db}, \quad \text{and} \quad \frac{dz_i}{dw_j}. \tag{2}
\]

Exercise 1.2 Based on the model in (1), derive expressions for

\[
\frac{\partial J}{\partial z_i}, \quad \frac{dz_i}{db}, \quad \text{and} \quad \frac{dz_i}{dw_j}. \tag{3}
\]

Exercise 1.3 Implement a logistic regression model that can be trained with gradient descent based on some training dataset \(\{x_i, y_i\}_{i=1}^n \).

The solution should involve the following functionalities:

- **Initialize** Write a function that initializes the parameters \(w \) and \(b \). For logistic regression it is sufficient to initialize all parameters with zeros.

- **Compute cost and gradients** Compute the cost \(J \) and the gradient of the cost function with respect to all parameters \(\frac{\partial J}{\partial b} \) and \(\frac{\partial J}{\partial w} \). For this, you need the mathematical expression in (1), (2) and (3).
- **Optimize** Update the parameters iteratively with gradient descent.
- **Predict** Using the trained model, predict $\hat{y}_i \in \{0, 1\}$ based on the corresponding input x_i.

Exercise 1.4 Evaluate the model on a biopsy dataset from breast cancer patient. Your task is to train a model and predict if a certain biopsy is "benign" or "malignant".

More specifically, your tasks are:

1. Load the data `biopsy.csv`.
2. Remove all lines with NA values.
3. Split the dataset into 300 data points for training data and the remaining part of the dataset as test data.
4. Train a logistic regression model that minimizes the cost on training data.
5. Evaluate the performance on test data.

You should be able to reach around 95% prediction accuracy on test data. If you are running python, we have a script on the course homepage which do step 1-3. In the report, include a plot of the cost both on training and test data versus iterations. Also, include a plot with the classification accuracy, also evaluated on both test and training data.

1 Download: https://vincentarelbundock.github.io/Rdatasets/csv/MASS/biopsy.csv
2 Info: https://vincentarelbundock.github.io/Rdatasets/doc/MASS/biopsy.html