Aim: Provide some insight into the convergence and stability of the bootstrap particle filter.

Outline:

1. Central limit theorem for importance sampling
2. Central limit theorem for the bootstrap particle filter
3. Stability — key difference between the two
CLT for importance sampling
Importance sampling,

Target: $\pi(x)$

Proposal: $q(x)$

Weight function: $\omega(x) = \frac{\pi(x)}{q(x)}$
Importance sampling

Target: $\pi(x)$

Proposal: $q(x)$

Weight function: $\omega(x) = \frac{\pi(x)}{q(x)}$

Procedure (for $i = 1, \ldots, N$)

1. Sample $x^i \sim q(x)$,
2. Compute $\tilde{w}^i = \omega(x^i)$,
3. Normalize $w^i = \frac{\tilde{w}^i}{\sum_{j=1}^{N} \tilde{w}^i}$.
Importance sampling

Target: \(\pi(x) \)
Proposal: \(q(x) \)
Weight function: \(\omega(x) = \frac{\pi(x)}{q(x)} \)

Procedure (for \(i = 1, \ldots, N \))
1. Sample \(x^i \sim q(x) \),
2. Compute \(\tilde{w}^i = \omega(x^i) \),
3. Normalize \(w^i = \frac{\tilde{w}^i}{\sum_{j=1}^{N} \tilde{w}^j} \).

N.B. Here, we define \(\omega \) in terms of the normalized target – no difference algorithmically but simplifies analysis.
Importance sampling bias

From the black board we have,

\[
\mathbb{E} \left[\hat{I}_N^S(\varphi) \right] = I(\varphi) - \frac{\text{Cov}_q[g(X), \omega(X)]}{N} + \frac{I(\varphi) \text{Var}_q[\omega(X)]}{N} + O\left(\frac{1}{N^2} \right)
\]
Importance sampling bias

From the black board we have,

\[
\mathbb{E}\left[\hat{I}_N^{IS}(\varphi) \right] = I(\varphi) - \frac{\text{Cov}_q[g(X), \omega(X)]}{N} + \frac{I(\varphi) \text{Var}_q[\omega(X)]}{N} + O\left(\frac{1}{N^2}\right)
\]

Thus, the bias in the importance sampling estimator, for large \(N \), is

\[
\mathbb{E}\left[\hat{I}_N^{IS}(\varphi) \right] - I(\varphi) \approx -\frac{\text{Cov}_q[g(X), \omega(X)]}{N} + \frac{I(\varphi) \text{Var}_q[\omega(X)]}{N} = \cdots = -\frac{1}{N} \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - I(\varphi)) \, dx
\]
Importance sampling bias and variance

Importance sampling bias (large N):

$$\mathbb{E}
\left[
\hat{I}_N^S(\varphi)
\right] - I(\varphi) \approx - \frac{1}{N} \int \frac{\pi(x)^2}{q(x)} \left(\varphi(x) - I(\varphi)\right)dx$$
Importance sampling bias and variance

Importance sampling bias (large N):

$$\mathbb{E} \left[\hat{l}_N^S(\varphi) \right] - l(\varphi) \approx -\frac{1}{N} \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - l(\varphi)) dx$$

Importance sampling variance (large N):

$$\text{Var} \left[\hat{l}_N^S(\varphi) \right] \approx \frac{1}{N} \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - l(\varphi))^2 dx$$
Importance sampling bias (large N):

$$
\mathbb{E}\left[\hat{I}_N^S(\varphi)\right] - I(\varphi) \approx -\frac{1}{N} \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - I(\varphi))dx
$$

Importance sampling variance (large N):

$$
\text{Var}\left[\hat{I}_N^S(\varphi)\right] \approx \frac{1}{N} \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - I(\varphi))^2dx
$$

Mean-squared error = bias2 + variance — Dominated by variance!
Central limit theorem (CLT) for importance sampler

\[
\sqrt{N} \left(\sum_{i=1}^{N} W_i \varphi(X_i) - I(\varphi) \right) \xrightarrow{d} \mathcal{N} \left(0, \int \frac{\pi(x)^2}{q(x)} (\varphi(x) - I(\varphi))^2 dx \right)
\]
Importance sampling for filtering

Importance sampling for \(\pi(x_{0:t}) = p(x_{0:t} \mid y_{1:t}) \), where

\[
p(x_{0:t} \mid y_{1:t}) = \frac{p(x_{0:t}, y_{1:t})}{p(y_{1:t})} \propto p(y_{1:t} \mid x_{0:t})p(x_{0:t})
\]
Importance sampling for filtering

Importance sampling for \(\pi(x_{0:t}) = p(x_{0:t} \mid y_{1:t}) \), where

\[
p(x_{0:t} \mid y_{1:t}) = \frac{p(x_{0:t}, y_{1:t})}{p(y_{1:t})} \propto p(y_{1:t} \mid x_{0:t})p(x_{0:t})
\]

Procedure: (for \(i = 1, \ldots, N \))

1. Generate \(x_{0:t}^i \sim p(x_{0:t}) \) by simulating the system dynamics
2. Compute weights \(\tilde{w}_t^i = p(y_{1:t} \mid x_{0:t}^i) \) and normalize \(\Rightarrow w_t^i \)
ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent over time (no dynamics),

\[
X_t \sim \mathcal{N}(0, 1), \quad t = 0, 1, \ldots,
\]

\[
Y_t \mid (X_t = x_t) \sim \mathcal{N}(x_t, \sigma^2), \quad t = 1, 2, \ldots
\]
ex) **Importance sampling for filtering**

ex) Very simple state space model where the states are independent over time (no dynamics),

\[
X_t \sim \mathcal{N}(0, 1), \quad t = 0, 1, \ldots,
\]
\[
Y_t \mid (X_t = x_t) \sim \mathcal{N}(x_t, \sigma^2), \quad t = 1, 2, \ldots
\]

Asymptotic variance of importance sampler at time \(t \) is,

\[
\left\{ \prod_{k=0}^{t-1} \int \frac{p(x_k \mid y_k)^2}{p(x_k)} \, dx_k \right\} \int \frac{p(x_t \mid y_t)^2}{p(x_t)} (\varphi(x_t) - l_t(\varphi))^2 \, dx_t
\]
ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent over time (no dynamics),

\[X_t \sim \mathcal{N}(0, 1), \quad t = 0, 1, \ldots, \]

\[Y_t \mid (X_t = x_t) \sim \mathcal{N}(x_t, \sigma^2), \quad t = 1, 2, \ldots \]

Asymptotic variance of importance sampler at time \(t \) is,

\[
\left\{ \prod_{k=0}^{t-1} \int \frac{p(x_k \mid y_k)^2}{p(x_k)} \, dx_k \right\} \int \frac{p(x_t \mid y_t)^2}{p(x_t)} (\varphi(x_t) - l_t(\varphi))^2 \, dx_t
\]
ex) Importance sampling for filtering

ex) Very simple state space model where the states are independent over time (no dynamics),

\[X_t \sim \mathcal{N}(0, 1), \quad t = 0, 1, \ldots, \]
\[Y_t \mid (X_t = x_t) \sim \mathcal{N}(x_t, \sigma^2), \quad t = 1, 2, \ldots \]

Asymptotic variance of importance sampler at time \(t \) is,

\[
\left\{ \prod_{k=0}^{t-1} \int \frac{p(x_k \mid y_k)^2}{p(x_k)} \, dx_k \right\} \int \frac{p(x_t \mid y_t)^2}{p(x_t)} (\varphi(x_t) - l_t(\varphi))^2 \, dx_t
\]
CLT for bootstrap particle filter
Test function: \(I_t(\varphi) = \mathbb{E}[\varphi(X_t) \mid y_{1:t}] \).

Theorem: CLT for bootstrap particle filter

\[
\sqrt{N} \left(\sum_{i=1}^{N} W_t^i \varphi(X_t^i) - I_t(\varphi) \right) \xrightarrow{d} \mathcal{N}(0, V_t(\varphi))
\]

with

\[
V_t(\varphi) = \sum_{k=0}^{t} \int \frac{p(x_k \mid y_{1:k-1})^2}{p(x_k \mid y_{1:k})} \left(I_{k,t}(\varphi \mid x_k) - I_t(\varphi) \right)^2 \, dx_k
\]

and

\[
I_{k,t}(\varphi \mid x_k) = \mathbb{E}[\varphi(X_t) \mid y_{k+1:t}, x_k] = \int \varphi(x_t) p(x_t \mid x_k, y_{k+1:t}) \, dx_t.
\]
Simple model with $X_t \sim \mathcal{N}(0, 1)$, independent over time.

$$I_{k,t}(\varphi \mid x_k) = \mathbb{E}[\varphi(X_t) \mid y_{k+1:t}, x_k] = \begin{cases} \mathbb{E}[\varphi(X_t) \mid y_t] & k < t, \\ \varphi(x_t) & k = t, \end{cases}$$

It follows that all terms $k < t$ in the definition of $V_t(\varphi)$ are zero!
Often the distant past has little effect on the future (and vice versa) — referred to as **forgetting**
Often the distant past has little effect on the future (and vice versa) — referred to as **forgetting**

Exponential forgetting of **exact filter**:

\[
\frac{1}{2} \int |p(x_t | x_k, y_{k+1:t}) - p(x_t | x'_k, y_{k+1:t})| \, dx_t \leq \rho^{t-k}
\]

Furthermore, it often holds that,

\[
\frac{p(x_k | y_{1:t})^2}{p(x_k | y_{1:k-1})} \approx \frac{p(x_k | y_{1:k+\Delta})^2}{p(x_k | y_{1:k-1})}
\]
Often the distant past has little effect on the future (and vice versa) — referred to as **forgetting**

Exponential forgetting of **exact filter**:

$$\frac{1}{2} \int |p(x_t \mid x_k, y_{k+1:t}) - p(x_t \mid x'_k, y_{k+1:t})| dx_t \leq \rho^{t-k}$$

Furthermore, it often holds that,

$$\frac{p(x_k \mid y_{1:t})^2}{p(x_k \mid y_{1:k-1})} \leq A$$
Often the distant past has little effect on the future (and vice versa) — referred to as **forgetting**

Exponential forgetting of **exact filter**:

\[
\frac{1}{2} \int |p(x_t \mid x_k, y_{k+1:t}) - p(x_t \mid x'_k, y_{k+1:t})| \, dx_t \leq \rho^{t-k}
\]

Furthermore, it often holds that,

\[
\frac{p(x_k \mid y_{1:t})^2}{p(x_k \mid y_{1:k-1})} \leq A
\]

Thus, for bounded $|\varphi| < B$, it holds that $V_t(\varphi) \leq C$, independent of t!
Often the distant past has little effect on the future (and vice versa) — referred to as forgetting.

Exponential forgetting of exact filter:

\[\frac{1}{2} \int |p(x_t | x_k, y_{k+1:t}) - p(x_t | x'_k, y_{k+1:t})| dx_t \leq \rho^{t-k} \]

Furthermore, it often holds that,

\[\frac{p(x_k | y_{1:t})^2}{p(x_k | y_{1:k-1})} \leq A \]

Thus, for bounded \(|\varphi| < B \), it holds that \(V_t(\varphi) \leq C \), independent of \(t \).

The bootstrap particle filter is stable, in the sense that the estimator variance does not increase (unboundedly) with \(t \).
Proof sketch
Three steps of the approximation

\[\sum_{i=1}^{N} w_{t-1}^i \varphi(x_{t-1}^i) \text{ approximates } \mathbb{E}[\varphi(X_{t-1}) | y_{1:t-1}] \]

Resampling: \(a_t^i \sim \text{Discrete}\{w_{t-1}^j\}_{j=1}^{N} \)

Propagation: \(x_t^i \sim p(x_t | x_{t-1}^{a_t^i}) \)

Weighting: \(\tilde{w}_t^i = p(y_t | x_t^i) \) and normalize \(\Rightarrow w_t^i \)
Three steps of the approximation

\[\sum_{i=1}^{N} w^i_{t-1} \varphi(x^i_{t-1}) \text{ approximates } \mathbb{E}[\varphi(X^i_{t-1}) | y_{1:t-1}] \]

Resampling: \[\frac{1}{N} \sum_{i=1}^{N} \varphi(x^{a^i}_{t-1}) \text{ approximates } \mathbb{E}[\varphi(X^i_{t-1}) | y_{1:t-1}] \]

Propagation: \[x^i_t \sim p(x_t | x^{a^i}_{t-1}) \]

Weighting: \[\tilde{w}^i_t = p(y_t | x^i_t) \text{ and normalize } \Rightarrow w^i_t \]
Three steps of the approximation

\[\sum_{i=1}^{N} w_{t-1}^{i} \varphi(x_{t-1}^{i}) \text{ approximates } \mathbb{E}[\varphi(X_{t-1}) \mid y_{1:t-1}]\]

Resampling: \(\frac{1}{N} \sum_{i=1}^{N} \varphi(x_{t-1}^{a_{i}}) \text{ approximates } \mathbb{E}[\varphi(X_{t-1}) \mid y_{1:t-1}] \)

Propagation: \(\frac{1}{N} \sum_{i=1}^{N} \varphi(x_{t}^{i}) \text{ approximates } \mathbb{E}[\varphi(X_{t}) \mid y_{1:t-1}] \)

Weighting: \(\tilde{w}_{t}^{i} = p(y_{t} \mid x_{t}^{i}) \) and normalize \(\Rightarrow w_{t}^{i} \)
Three steps of the approximation

\[
\sum_{i=1}^{N} w_{t-1}^i \varphi(x_{t-1}^i) \text{ approximates } \mathbb{E}[\varphi(X_{t-1}) | y_{1:t-1}]
\]

Resampling: \(\frac{1}{N} \sum_{i=1}^{N} \varphi(x_{t-1}^i) \text{ approximates } \mathbb{E}[\varphi(X_{t-1}) | y_{1:t-1}] \)

Propagation: \(\frac{1}{N} \sum_{i=1}^{N} \varphi(x_t^i) \text{ approximates } \mathbb{E}[\varphi(X_t) | y_{1:t-1}] \)

Weighting: \(\sum_{i=1}^{N} w_t^i \varphi(x_t^i) \text{ approximates } \mathbb{E}[\varphi(X_t) | y_{1:t}] \)
Inductive hypothesis:

\[
\sqrt{N} \left(\sum_{i=1}^{N} W_{t-1}^{i} \varphi(X_{t-1}^{i}) - \mathbb{E}[\varphi(X_{t-1}) | y_{1:t-1}] \right) \xrightarrow{d} \mathcal{N}(0, V_{t-1}(\varphi))
\]

Resampling:

\[
\sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \varphi(X_{t-1}^{A_{t-1}^{i}}) - \mathbb{E}[\varphi(X_{t-1}) | y_{1:t-1}] \right) \xrightarrow{d} \mathcal{N}(0, \tilde{V}_{t-1}(\varphi))
\]

with \(\tilde{V}_{t-1}(\varphi) = V_{t-1}(\varphi) + \text{Var}[\varphi(X_{t-1}) | y_{1:t-1}] \) follows from a conditional CLT.
Inductive proof idea (II/II)

Propagation:

\[
\sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \varphi(X_t^i) - \mathbb{E}[\varphi(X_t) \mid y_{1:t-1}] \right) \xrightarrow{d} \mathcal{N}(0, \tilde{V}_t(\varphi))
\]

with \(\tilde{V}_t(\varphi) = \tilde{V}_{t-1}(\mathbb{E}[\varphi(X_t) \mid x_{t-1}]) + \mathbb{E}[\text{Var}[\varphi(X_t) \mid X_{t-1}] \mid y_{1:t-1}] \),
again, follows from a conditional CLT.
Inductive proof idea (II/II)

Propagation:

\[\sqrt{N} \left(\frac{1}{N} \sum_{i=1}^{N} \varphi(x_t^i) - \mathbb{E}[\varphi(x_t) \mid y_{1:t-1}] \right) \xrightarrow{d} \mathcal{N}(0, \tilde{V}_t(\varphi)) \]

with \(\tilde{V}_t(\varphi) = \tilde{V}_{t-1}(\mathbb{E}[\varphi(x_t) \mid x_{t-1}]) + \mathbb{E}[\text{Var}[\varphi(x_t) \mid x_{t-1}] \mid y_{1:t-1}] \), again, follows from a conditional CLT.

Weighting:

\[\sqrt{N} \left(\sum_{i=1}^{N} W_t^i \varphi(x_t^i) - \mathbb{E}[\varphi(x_t) \mid y_{1:t}] \right) \xrightarrow{d} \mathcal{N}(0, V_t(\varphi)) \]

with \(V_t(\varphi) = \tilde{V}_t \left(\frac{p(y_t \mid x_t)}{p(y_t \mid y_{1:t-1})} \cdot \{ \varphi(x_t) - \mathbb{E}[\varphi(x_t) \mid y_{1:t}] \} \right) \) follows from the delta method.
A non-exhaustive list of references:

Bias and variance: both of order $\frac{1}{N}$ — mean squared error dominated by variance! (Holds for both importance sampling and particle filter.)

Exponential forgetting: A property of the dynamical model — the influence of historical states on the future diminishes exponentially fast.

Particle filter stability: Under forgetting conditions, errors do not accumulate with time.
Practicals: From 15:15 — 17:00 in Room VIII and Room XI