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Example: double-ended queue

Left sentinel

Thread 1

10X

Thread 2

30 X20

Right sentinel

• Support push/pop on both ends

• Allow concurrency where possible

• Avoid deadlock



Implementing this: atomic blocks

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;

}
}

...
}



Design questions

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;

}
}

...
}

“What happens to 

this object if the 

atomic block is 

rolled back?

“What happens if this 

fails with an exception; 

are the other updates 

rolled back?

“What if another thread tries 

to access one of these fields 

without being in an atomic 

block?

“What if another atomic block 

updates one of these fields?  

Will I see the value change mid-

way through my atomic block?

“What about 

I/O?

“What about memory access 

violations, exceptions, security 

error logs, ...?



Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true;   x = 0;
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Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false;   x = 1;

Old val
x=0

x_shared
== true



Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false;   x = 100;

Old val
x=0

x_shared
== true



Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
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}
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Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false;   x = 0;



The main argument

Language implementation

Program Threads,

atomic blocks

TM

StartTx, CommitTx

TxRead, TxWrite

1. We need a methodical way to define 
these constructs.

2. We should focus on defining this 
programmer-visible interface, rather 
than the internal “TM” interface.



An analogy

Language implementation

Program Garbage collected

“infinite” memory

GC

Low-level, broad,

platform-specific API,

no canonical def.



Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance



Strong semantics: a simple interleaved model

1 2 3 4 5

Sequential interleaving of 
operations by threads.

No program transformations 
(optimization, weak memory, etc.)

Thread 5 enters an atomic block: 
prohibits the interleaving of 

operations from other threads
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x_shared = false;

}
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x_shared = false;   x = 101;
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if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false;   x = 0;



Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false;   x = 1;



Pragmatically, do we care about...

atomic {
x = 100;
x = 200;

}

temp = x;
Console.WriteLine(temp);

x = 0;



How: strong semantics for race-free programs

Strong semantics: simple 
interleaved model of multi-
threaded execution

T

1 2 3 4 5

Thread 4 in 

an atomic 

block
Data race: concurrent accesses 
to the same location, at least 
one a write

Race-free: no data races 
(under strong semantics)

Write(x)

Write(x)



Hiding TM from programmers

Programming discipline(s)

What does it mean for a 
program to use the 

constructs correctly?

Low-level semantics & 
actual implementations

Transactions, lock inference, optimistic 
concurrency, program transformations, 

weak memory models, ...

Strong semantics 

atomic, retry, ..... what, ideally, 
should these constructs do?



Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true;   x = 0;

Correctly synchronized: no concurrent access to “x” under strong semantics



Example: a “racy” publication idiom

atomic {
x = new Foo(...);
x_shared = true;

}

if (x_shared) {
// Use x

}

x_shared = false;   x = null;

Not correctly synchronized: race on “x_shared” under strong semantics



What about...

• ...I/O?

• ...volatile fields?

• ...locks inside/outside atomic blocks?

• ...condition variables?

Methodical approach: what happens 
under the simple, interleaved model?

1. Ideally, what does it do?
2. Which uses are race-free?



What about I/O?

atomic {
Console.WriteLine(“What is your name?“);
x = Console.ReadLine();
Console.WriteLine(“Hello “ + x);

}

The entire write-read-write 
sequence should run (as if) without 

interleaving with other threads



What about C#/Java volatile fields?

volatile int x, y = 0;

atomic {
x = 5;
y = 10;
x = 20;

}

r1 = x;

r2 = y;

r3 = x;

r1=20, r2=10, r3=20

r1=0, r2=10, r3=20

r1=0, r2=0, r3=20

r1=0, r2=0, r3=0



What about locks?

atomic {
lock(obj1);
x = 42;
unlock(obj1);

}

lock(obj1);
x = 42;
unlock(obj1);

Correctly synchronized: both threads would need “obj1” to access “x”



What about locks?

atomic {
x = 42;

}

lock(obj1);
x = 42;
unlock(obj1);

Not correctly synchronized: no consistent synchronization



What about condition variables?

atomic {
lock(buffer);
while (!full) buffer.wait();
full = true;
...
unlock(buffer);

}

Correctly synchronized: ...and works OK in this example



What about condition variables?
Correctly synchronized: ...but program doesn’t work in this example

atomic {
lock(barrier); 
waiters ++;
while (waiters < N) {

barrier.wait();
}
unlock(barrier);

}

Should run before 
waiting

Should run after 
waiting

Programmer says must 
run atomically



Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance



Division of responsibility

Desired semantics
atomic blocks, retry, ...

STM primitives
StartTx, CommitTx, ReadTx, WriteTx, ...

Hardware primitives
Conventional h/w: read, write, CAS

Lets us keep a very 
relaxed view of what 
the STM must do... 

zombie tx, etc

Build strong guarantees 
by segregating tx / 

non-tx in the runtime 
system



Implementation 1: “classical” atomic blocks on TM

Language implementation

Program
Threads,

atomic blocks,

retry, OrElse

Strong 
TM

Simple 
transformation

Lazy update, opacity,

ordering guarantees...



Language implementation

Program Threads,

atomic blocks

StartTx, CommitTx,

ValidateTx,

ReadTx(addr)->val,

WriteTx(addr, val)

Implementation 2: very weak TM

Very weak 
STM

Sandboxing  
for zombies

Isolation of 
tx via MMU

Program 
analyses

GC 
support



Implementation 3: lock inference

Language implementation

Program
Threads,

atomic blocks,

retry, OrElse

Locks
Lock, unlock

Lock inference 
analysis



Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

Normal mutable state in STM-Haskell

“Dangerous” feature combinations, e.g, 
condition variables inside atomic blocks



Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

e.g., an “ordinary” library abstraction 
used in an atomic block

Is this possible?
Will it scale well?

Will this be correctly synchronized?



Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM
Prevent roll-back, ensure the 
transaction wins all conflicts. 

Fall-back case for I/O operations.
Use for rare cases, e.g., class initializers



Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

Provide conflict detection, recovery, etc, 
e.g. via 2-phase commit

Low-level integration of GC, memory 
management, etc.



Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance



Performance figures depend on...

• Workload : What do the atomic blocks do?  How long is spent inside 
them?

• Baseline implementation: Mature existing compiler, or prototype?

• Intended semantics: Support static separation?  Violation freedom 
(TDRF)?  

• STM implementation: In-place updates, deferred updates, 
eager/lazy conflict detection, visible/invisible readers?

• STM-specific optimizations: e.g. to remove or downgrade redundant 
TM operations

• Integration: e.g. dynamically between the GC and the STM, or 
inlining of STM functions during compilation

• Implementation effort: low-level perf tweaks, tuning, etc.

• Hardware: e.g. performance of CAS and memory system



Labyrinth

s1

e1

• STAMP v0.9.10

• 256x256x3 grid

• Routing 256 paths

• Almost all execution inside atomic 

blocks

• Atomic blocks can attempt 100K+ 

updates

• C# version derived from original C

• Compiled using Bartok, whole 

program mode, C# -> x86 (~80% 

perf of original C with VS2008)

• Overhead results with Core2 Duo 

running Windows Vista

“STAMP: Stanford Transactional Applications for Multi-Processing”

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008
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Sequential overhead

STM implementation supporting static separation

In-place updates

Lazy conflict detection

Per-object STM metadata

Addition of read/write barriers before accesses

Read: log per-object metadata word

Update: CAS on per-object metadata word

Update: log value being overwritten



Sequential overhead
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Dynamic filtering to remove redundant logging

Log size grows with #locations accessed

Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)

2nd level: per-object bitmap of updated fields



Sequential overhead
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Data-flow optimizations

Remove repeated log operations

Open-for-read/update on a per-object basis

Log-old-value on a per-field basis

Remove concurrency control on newly-allocated objects



Sequential overhead
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Re-use table_base between filter operations

Avoids caller save/restore on filter hits

mov eax <- obj_addr

and eax <- eax, 0xffc

mov ebx <- [table_base + eax]

cmp ebx, obj_addr



Sequential overhead
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Re-use STM logs between transactions

Reduces pressure on per-page allocation lock

Reduces time spent in GC



Scaling – Genome
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Scaling – Labyrinth
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Static separation

Strong atomicity

1.0 = wall-clock execution 

time of sequential code 

without concurrency control



Making sense of TM

• Focus on the interface between the language 

and the programmer

– Talk about atomicity, not TM

– Permit a range of tx and non-tx implementations

• Define idealized “strong semantics” for the 

language (c.f. sequential consistency)

• Define what it means for a program to be 

“correctly synchronized” under these semantics

• Treat complicated cases methodically (I/O, 

locking, etc) 


