
Making sense of

transactional memory

Tim Harris (MSR Cambridge)

Based on joint work with colleagues at MSR Cambridge, MSR Mountain View,

MSR Redmond, the Parallel Computing Platform group, Barcelona Supercomputing Centre,

and the University of Cambridge Computer Lab

Example: double-ended queue

Left sentinel

Thread 1

10X

Thread 2

30 X20

Right sentinel

• Support push/pop on both ends

• Allow concurrency where possible

• Avoid deadlock

Implementing this: atomic blocks

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;

}
}

...
}

Design questions

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;
e.left = this.leftSentinel;
this.leftSentinel.right.left = e;
this.leftSentinel.right = e;

}
}

...
}

“What happens to

this object if the

atomic block is

rolled back?

“What happens if this

fails with an exception;

are the other updates

rolled back?

“What if another thread tries

to access one of these fields

without being in an atomic

block?

“What if another atomic block

updates one of these fields?

Will I see the value change mid-

way through my atomic block?

“What about

I/O?

“What about memory access

violations, exceptions, security

error logs, ...?

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

x_shared
== true

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Old val
x=0

x_shared
== true

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 0;

Old val
x=0

x_shared
== true

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 1;

Old val
x=0

x_shared
== true

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 100;

Old val
x=0

x_shared
== true

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 0;

Old val
x=0

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 0;

The main argument

Language implementation

Program Threads,

atomic blocks

TM

StartTx, CommitTx

TxRead, TxWrite

1. We need a methodical way to define
these constructs.

2. We should focus on defining this
programmer-visible interface, rather
than the internal “TM” interface.

An analogy

Language implementation

Program Garbage collected

“infinite” memory

GC

Low-level, broad,

platform-specific API,

no canonical def.

Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance

Strong semantics: a simple interleaved model

1 2 3 4 5

Sequential interleaving of
operations by threads.

No program transformations
(optimization, weak memory, etc.)

Thread 5 enters an atomic block:
prohibits the interleaving of

operations from other threads

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 100;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 100;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 101;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 0;

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = false; x = 1;

Pragmatically, do we care about...

atomic {
x = 100;
x = 200;

}

temp = x;
Console.WriteLine(temp);

x = 0;

How: strong semantics for race-free programs

Strong semantics: simple
interleaved model of multi-
threaded execution

T

1 2 3 4 5

Thread 4 in

an atomic

block
Data race: concurrent accesses
to the same location, at least
one a write

Race-free: no data races
(under strong semantics)

Write(x)

Write(x)

Hiding TM from programmers

Programming discipline(s)

What does it mean for a
program to use the

constructs correctly?

Low-level semantics &
actual implementations

Transactions, lock inference, optimistic
concurrency, program transformations,

weak memory models, ...

Strong semantics

atomic, retry, what, ideally,
should these constructs do?

Example: a privatization idiom

atomic {
if (x_shared) {

x = 100;
}

}

atomic {
x_shared = false;

}
x++;

x_shared = true; x = 0;

Correctly synchronized: no concurrent access to “x” under strong semantics

Example: a “racy” publication idiom

atomic {
x = new Foo(...);
x_shared = true;

}

if (x_shared) {
// Use x

}

x_shared = false; x = null;

Not correctly synchronized: race on “x_shared” under strong semantics

What about...

• ...I/O?

• ...volatile fields?

• ...locks inside/outside atomic blocks?

• ...condition variables?

Methodical approach: what happens
under the simple, interleaved model?

1. Ideally, what does it do?
2. Which uses are race-free?

What about I/O?

atomic {
Console.WriteLine(“What is your name?“);
x = Console.ReadLine();
Console.WriteLine(“Hello “ + x);

}

The entire write-read-write
sequence should run (as if) without

interleaving with other threads

What about C#/Java volatile fields?

volatile int x, y = 0;

atomic {
x = 5;
y = 10;
x = 20;

}

r1 = x;

r2 = y;

r3 = x;

r1=20, r2=10, r3=20

r1=0, r2=10, r3=20

r1=0, r2=0, r3=20

r1=0, r2=0, r3=0

What about locks?

atomic {
lock(obj1);
x = 42;
unlock(obj1);

}

lock(obj1);
x = 42;
unlock(obj1);

Correctly synchronized: both threads would need “obj1” to access “x”

What about locks?

atomic {
x = 42;

}

lock(obj1);
x = 42;
unlock(obj1);

Not correctly synchronized: no consistent synchronization

What about condition variables?

atomic {
lock(buffer);
while (!full) buffer.wait();
full = true;
...
unlock(buffer);

}

Correctly synchronized: ...and works OK in this example

What about condition variables?
Correctly synchronized: ...but program doesn’t work in this example

atomic {
lock(barrier);
waiters ++;
while (waiters < N) {

barrier.wait();
}
unlock(barrier);

}

Should run before
waiting

Should run after
waiting

Programmer says must
run atomically

Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance

Division of responsibility

Desired semantics
atomic blocks, retry, ...

STM primitives
StartTx, CommitTx, ReadTx, WriteTx, ...

Hardware primitives
Conventional h/w: read, write, CAS

Lets us keep a very
relaxed view of what
the STM must do...

zombie tx, etc

Build strong guarantees
by segregating tx /

non-tx in the runtime
system

Implementation 1: “classical” atomic blocks on TM

Language implementation

Program
Threads,

atomic blocks,

retry, OrElse

Strong
TM

Simple
transformation

Lazy update, opacity,

ordering guarantees...

Language implementation

Program Threads,

atomic blocks

StartTx, CommitTx,

ValidateTx,

ReadTx(addr)->val,

WriteTx(addr, val)

Implementation 2: very weak TM

Very weak
STM

Sandboxing
for zombies

Isolation of
tx via MMU

Program
analyses

GC
support

Implementation 3: lock inference

Language implementation

Program
Threads,

atomic blocks,

retry, OrElse

Locks
Lock, unlock

Lock inference
analysis

Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

Normal mutable state in STM-Haskell

“Dangerous” feature combinations, e.g,
condition variables inside atomic blocks

Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

e.g., an “ordinary” library abstraction
used in an atomic block

Is this possible?
Will it scale well?

Will this be correctly synchronized?

Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM
Prevent roll-back, ensure the
transaction wins all conflicts.

Fall-back case for I/O operations.
Use for rare cases, e.g., class initializers

Integrating non-TM features

• Prohibit

• Directly execute over TM

• Use irrevocable execution

• Integrate it with TM

Provide conflict detection, recovery, etc,
e.g. via 2-phase commit

Low-level integration of GC, memory
management, etc.

Defining “atomic”, not “TM”

Implementing atomic over TM

Current performance

Performance figures depend on...

• Workload : What do the atomic blocks do? How long is spent inside
them?

• Baseline implementation: Mature existing compiler, or prototype?

• Intended semantics: Support static separation? Violation freedom
(TDRF)?

• STM implementation: In-place updates, deferred updates,
eager/lazy conflict detection, visible/invisible readers?

• STM-specific optimizations: e.g. to remove or downgrade redundant
TM operations

• Integration: e.g. dynamically between the GC and the STM, or
inlining of STM functions during compilation

• Implementation effort: low-level perf tweaks, tuning, etc.

• Hardware: e.g. performance of CAS and memory system

Labyrinth

s1

e1

• STAMP v0.9.10

• 256x256x3 grid

• Routing 256 paths

• Almost all execution inside atomic

blocks

• Atomic blocks can attempt 100K+

updates

• C# version derived from original C

• Compiled using Bartok, whole

program mode, C# -> x86 (~80%

perf of original C with VS2008)

• Overhead results with Core2 Duo

running Windows Vista

“STAMP: Stanford Transactional Applications for Multi-Processing”

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

11.86

3.14
1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Sequential overhead

STM implementation supporting static separation

In-place updates

Lazy conflict detection

Per-object STM metadata

Addition of read/write barriers before accesses

Read: log per-object metadata word

Update: CAS on per-object metadata word

Update: log value being overwritten

Sequential overhead

11.86

3.14
1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed

Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)

2nd level: per-object bitmap of updated fields

Sequential overhead

11.86

3.14
1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Data-flow optimizations

Remove repeated log operations

Open-for-read/update on a per-object basis

Log-old-value on a per-field basis

Remove concurrency control on newly-allocated objects

Sequential overhead

11.86

3.14
1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e Inline optimized filter operations

Re-use table_base between filter operations

Avoids caller save/restore on filter hits

mov eax <- obj_addr

and eax <- eax, 0xffc

mov ebx <- [table_base + eax]

cmp ebx, obj_addr

Sequential overhead

11.86

3.14
1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock

Reduces time spent in GC

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

1.0 = wall-clock execution

time of sequential code

without concurrency control

Making sense of TM

• Focus on the interface between the language

and the programmer

– Talk about atomicity, not TM

– Permit a range of tx and non-tx implementations

• Define idealized “strong semantics” for the

language (c.f. sequential consistency)

• Define what it means for a program to be

“correctly synchronized” under these semantics

• Treat complicated cases methodically (I/O,

locking, etc)

