
TOWARDS A SOFTWARE

TRANSACTIONAL MEMORY

FOR GRAPHICS PROCESSORS

Daniel Cederman, Muhammad Tayyab Chaudhry, Philippas Tsigas

Introduction

Software Transactional Memory

 We want to locate an element in a binary balanced tree

 The problem is, some other process is rebalancing it

8

3 12
17

10

15

Software Transactional Memory

STMs provides a construct that guarantees that the

enclosed code will be executed atomically

atomic

{

find position in tree

insert element

rebalance if necessary

}

Software Transactional Memory

 One lock

 No concurrency

 Busy waiting

 Convoying

 Multiple locks

 Better concurrency

 Difficult

 Static analysis

Software Transactional Memory

 Dynamic locks

 Locks are assigned to words, objects, … and are
acquired when data at these locations are read and/or
written to

 Could be acquired directly or at the end of transaction

 In case of conflict - abort

 Keep log of reads/writes

 Keep undo log

 Dynamic locks with helping

 Removes the need for busy waiting

Software Transactional Memory

 Efficiency is an issue

 Might get better with hardware support

 How does it fare on graphics processors?

Graphics Processors

 Many-core

 SIMD Instructions

 Single Instruction Multiple Data

 Small or no cache

 High memory bandwidth

 Thousands of threads

CUDA

 Programming platform for NVIDIA graphics

processors

 C/C++ based language extended to support

executing functions on the graphics processors

instead of CPU

CUDA

 Small processor-local memory

 8-word SIMD instruction

 Coalesced memory access

Multiple memory accesses merged into one larger

 No stack – functions inlined

Implementations

Two STMs

 Blocking STM

 Simpler, and potentially more efficient, if locks are held
only for a very short time

 No recursion needed

 Non-blocking STM

 T. Harris and K. Fraser "Language support for
lightweight transactions", OOPSLA 2003

One transaction will always be successful

 Protected against poor scheduling

 No busy waiting

Differences

 Blocking

 Transactions that fail to acquire a lock are aborted

 Avoids deadlocks

 A set of locks are shared between objects

 Provides a middle ground between having just one lock and
having one for each object

 Non-blocking

 Transactions that fail to acquire a lock can help the other
transaction commit or abort it

 Guarantees that one transaction can make progress

 Each object has its own lock

Common Features

 Object based

 Coalesced reads and writes are encouraged

 Updates are kept local until commit time

 Avoids the problem of handling an inconsistent view of

the memory

 The memory is only locked at commit time

 An optimistic approach. Could delay the time taken to

discover conflicts

Common Features

 Minimal use of processor local memory

 Better left to the main application

 SIMD instruction used where possible

Mostly used to coalesce reads and writes

Experiments

Contention levels

 We performed the experiments using different
contention levels

 One with zero wait time between transactions

 And one with around 500ms of work randomly
distributed between transactions

while(…)

{

wait(rand()%max)

do_operation()

}

Backoff

 Lowers contention by waiting before aborted

transactions are tried again

 Increases the probability that at least one

transaction is successful

 Different types

 None/static

 Linear

 Exponential

Skip-list

 GTX 280 – 30 multiprocessors

 1-60 threads

 Even distribution of inserts/lookups/removes

Skip-List – High Contention

Skip-List – Low Contention

Experiments

 Queue

 Binary Tree

 Hash-map

Results - High Contention

Results - Low Contention

Lock-free Skip-List

Threads

Conclusion

 Software Transactional Memory has attracted the

interest of many researchers over the recent years

 We have tested a blocking and a non-blocking STM

on a graphics processor. This is, to the best of our

knowledge, the first time this has been done

 The performance behavior was comparable to

results from conventional processors

 We now have a basis to build on for further

analysis

For more information:

http://www.cs.chalmers.se/~dcs

Thank you!

