> TOWARDS A SOFTWARE
*):’ TRANSACTIONAL MEMORY
Z FOR GRAPHICS PROCESSORS

- Introduction

Software Transactional Memory
N

1 We want to locate an element in a binary balanced tree

-1 The problem is, some other process is rebalancing it

Software Transactional Memory

STMs provides a construct that guarantees that the

enclosed code will be executed atomically

atomic
find position in tree
insert element
rebalance if necessary

}

Software Transactional Memory
—

71 One lock
o1 No concurrency
o Busy waiting
o1 Convoying
o Multiple locks
=1 Better concurrency
o1 Difficult

o Static analysis

Software Transactional Memory

Dynamic locks

Locks are assigned to words, objects, ... and are
acquired when data at these locations are read and/or

written to
Could be acquired directly or at the end of transaction

In case of conflict - abort
Keep log of reads/writes
Keep undo log
Dynamic locks with helping
Removes the need for busy waiting

Software Transactional Memory
—

-1 Efficiency is an issue

1 Might get better with hardware support

1 How does it fare on graphics processors?

Graphics Processors

Many-core

SIMD Instructions
Single Instruction Multiple Data

Small or no cache

High memory bandwidth

Thousands of threads

CUDA

Programming platform for NVIDIA graphics
processors

C/C++ based language extended to support
executing functions on the graphics processors

instead of CPU

CUDA

Small processor-local memory
8-word SIMD instruction

Coalesced memory access

Multiple memory accesses merged into one larger

No stack — functions inlined

- Implementations

Two STMs

Blocking STM

Simpler, and potentially more efficient, if locks are held
only for a very short time

No recursion needed

Non-blocking STM

T. Harris and K. Fraser "Language support for
lightweight transactions”, OOPSLA 2003

One transaction will always be successful
Protected against poor scheduling

No busy waiting

Differences

Blocking
Transactions that fail to acquire a lock are aborted
Avoids deadlocks

A set of locks are shared between objects

Provides a middle ground between having just one lock and
having one for each object

Non-blocking

Transactions that fail to acquire a lock can help the other
transaction commit or abort it

Guarantees that one transaction can make progress

Each object has its own lock

Common Features

Object based

Coalesced reads and writes are encouraged

Updates are kept local until commit time

Avoids the problem of handling an inconsistent view of
the memory

The memory is only locked at commit time

An optimistic approach. Could delay the time taken to
discover conflicts

Common Features

Minimal use of processor local memory
Better left to the main application
SIMD instruction used where possible

Mostly used to coalesce reads and writes

_ Jeperiments

Contention levels

We performed the experiments using different
contention levels

One with zero wait time between transactions

And one with around 500ms of work randomly
distributed between transactions

while(...)

{

wait(rand()%max)
do_operation()

}

Backoff

Lowers contention by waiting before aborted
transactions are tried again

Increases the probability that at least one
transaction is successful

Different types
None /static

Linear

Exponential

Skip-list

GTX 280 — 30 multiprocessors
1-60 threads

Even distribution of inserts/lookups/removes

SIEErE

I T T T

Skip-List — High Contention

Operations per millisecond (op/ms)

90
80
70
60
50
40
30
20
10

No backoff

Linear Backoff

Exponential Backoff

0 10 20 30 40 50 60 0

Blocking STM

10 20 30 40 50 600
Threads

4|7

Non-blocking STM

10 20 30 40 50 60

Skip-List — Low Contention

E" No backoff Linear Backoff Exponential Backoff
a 60]] I I]] |] |]] 1]]] 1
CJ
- 950 -
c .
S 40 - o < o
.g ** 42“,4" a X | '*+;1— *ﬂf’k’"
E 30 1 X I/M' vk*"jf : /44”“7'/{’
v A AH
5 # o +F
o 20 ~ . 4,,2" Ol ,}"ﬁ
47'(.;"r 714’*
g" 7‘/' X *%7"
:.% 10 N ’F’g’}- 7"_‘%’* ’(};F
g 0 -F‘(/.z | | | | | | —OZZ‘Z | | | | | | —F’ZF | | | |] |
8— 0O 10 20 30 40 50 600 10 20 30 40 50 600 10 20 30 40 50 60
Threads
Blocking STM ——

Non-blocking STM

Experiments

Quevue
Binary Tree

Hash-map

27

Results

Operations per millisecond (op/ms)

100

80

60

40

20

No backoff

High Contention

Linear Backoff

Exponential Backoff

_H'f‘—|—f'-f—+—|——|—+—+—|—f~—|—
K

?K

%%%%*x*

ﬁ’i +-|——+ BN . & 5. S

-k e - L
P ¥ - *- f ORI
>2—+—|——|-+—+—+—4—+—f——0—+—3<—+

0O 10 20 30 40 50 60 O

Queue
Binary Tree
Hash-Map

10 20 30 40 50 60 O

Threads

__%K____

10 20 30 40 50 60

Results - Low Contention

Operations per millisecond (op/ms)

40
35
30
25
20
15
10

5

0

No backoff Linear Backoff Exponential Backoff

I I]]]] 1] I I]] 1 I]]
] “‘;'x e K . | i K K

/' 3'4'% ,»{-'W 4._*——%’ '

/o ¥ & A K
T A% AZ AR

f’iﬁé /./* ' s :/% '

7] ,_,_i‘ /* /i
Pég | L | | | Pgé | | | | | PE‘ | | | | | |

0O 10 20 30 40 50 60 O 10 20 30 40 30 60 O 10 20 30 40 30 60

Queue
Binary Tree
Hash-Map

Threads

__%K____

Lock-free Skip-List

Operations per millisecond (op/ms)

1600
1400
1200
1000
800
600
400
200

No backoff

Blocking STM
Non-blocking STM

Sundell and Tsigas Skip-List

Threads

Conclusion

Software Transactional Memory has attracted the
interest of many researchers over the recent years

We have tested a blocking and a non-blocking STM
on a graphics processor. This is, to the best of our
knowledge, the first time this has been done

The performance behavior was comparable to
results from conventional processors

We now have a basis to build on for further
analysis

o

For more information:

http: / /www.cs.chalmers.se /~dcs

