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Exponential increase in processors speed has reached its
technological limits
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I Divide the workload on parallel threads
I Sustain the performance growth
I Concurrent algorithms are already a reality, e.g. the
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Parallelization comes at a price:
I Code extremely difficult to get right and to debug

I Correctness need to cover all possible interleavings, and all
possible numbers of threads

I Requires expertise and experience
I Built on intuition, often with hand-waving correctness

arguments
Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
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Tools are to implement verification techniques:

I Testing and simulation
are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms
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Concurrent Algorithms

Analysis needs to take into account several sources of difficulty:
I Arbitrary numbers of threads
I Infinite data domains
I Dynamic memory
I Memory model guaranteed by the machine
I ...
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system

I Adding more threads still
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property

Use upward closed sets as symbolic representations for states
violating safety properties
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Conclusion and Future Work

I Parallelization makes heavy use of concurrent algorithms

I We build automatic symbolic techniques to increase confidence
in concurrent algorithms

I Our techniques explore all interleavings for arbitrary numbers
of threads

I We obtained successful results and are working on the
verification of code found in widespread software, like the
java.util.concurrent package
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