
Verification of Concurrent Algorithms: an
Abstraction Refinement Approach

Giorgio Delzanno1 Frédéric Haziza2 Ahmed Rezine2

1Università di Genova

2Uppsala Universitet

MCC Uppsala 2009

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Introduction: parallelization

Exponential increase in processors speed has reached its
technological limits

I Increase the parallelization

I Divide the workload on parallel threads
I Sustain the performance growth
I Concurrent algorithms are already a reality, e.g. the

java.util.concurrent

Introduction: parallelization

Exponential increase in processors speed has reached its
technological limits

I Increase the parallelization
I Divide the workload on parallel threads

I Sustain the performance growth
I Concurrent algorithms are already a reality, e.g. the

java.util.concurrent

Introduction: parallelization

Exponential increase in processors speed has reached its
technological limits

I Increase the parallelization
I Divide the workload on parallel threads
I Sustain the performance growth

I Concurrent algorithms are already a reality, e.g. the
java.util.concurrent

Introduction: parallelization

Exponential increase in processors speed has reached its
technological limits

I Increase the parallelization
I Divide the workload on parallel threads
I Sustain the performance growth
I Concurrent algorithms are already a reality, e.g. the

java.util.concurrent

Introduction:price

Parallelization comes at a price:
I Code extremely difficult to get right and to debug

I Correctness need to cover all possible interleavings, and all
possible numbers of threads

I Requires expertise and experience
I Built on intuition, often with hand-waving correctness

arguments
Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
threads

Introduction:price

Parallelization comes at a price:
I Code extremely difficult to get right and to debug
I Correctness need to cover all possible interleavings, and all

possible numbers of threads

I Requires expertise and experience
I Built on intuition, often with hand-waving correctness

arguments
Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
threads

Introduction:price

Parallelization comes at a price:
I Code extremely difficult to get right and to debug
I Correctness need to cover all possible interleavings, and all

possible numbers of threads
I Requires expertise and experience

I Built on intuition, often with hand-waving correctness
arguments

Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
threads

Introduction:price

Parallelization comes at a price:
I Code extremely difficult to get right and to debug
I Correctness need to cover all possible interleavings, and all

possible numbers of threads
I Requires expertise and experience
I Built on intuition, often with hand-waving correctness

arguments

Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
threads

Introduction:price

Parallelization comes at a price:
I Code extremely difficult to get right and to debug
I Correctness need to cover all possible interleavings, and all

possible numbers of threads
I Requires expertise and experience
I Built on intuition, often with hand-waving correctness

arguments
Goal: Develop automatic tools that analyze source code and check
correctness for all possible interleavings and all possible numbers of
threads

Verification Approach

Tools are to implement verification techniques:

I Testing and simulation
are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√

Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Verification Approach

Tools are to implement verification techniques:
I Testing and simulation

are good for finding
errors

I Model checking is good
for showing correctness
and for debugging

Model |= Spec

√
Trace

Goal: Extend Model Checking to analyze concurrent algorithms

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Concurrent Algorithms: A non-bloquing queue

H T

#

0

0

0

v1

#

0

node

tail

0

next

Concurrent Algorithms: A non-bloquing queue

H T

#

0

0

0

v1

#

0

node

tail

0

next

Concurrent Algorithms: A non-bloquing queue

H T

#

0

0

0

v1

#

0

node

tail

0

next

Concurrent Algorithms: A non-bloquing queue

H T

#

0

0

0

v1

#

0

node

tail

0

next0

Concurrent Algorithms: A non-bloquing queue

H T

0

0

v1

#

0

node

tail

0

next

1

0

Concurrent Algorithms: A non-bloquing queue

H T

0

v1

#

0

node

tail

0

next

1

1

0

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

H T

0

1

#

0

v2 #0

node

tail
1

next
0

v3 #0

node

tail

1

next
0

next
0

next
1

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

H T

0

1

#

0

v2 #0

node

tail
1

next
0

v3 #0

node

tail

1

next
0

next
0

next
1

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

H T

0

1

#

0

v2 #0

node

tail
1

next
0

v3 #0

node

tail

1

next
0

next
0

next
1

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

H T

0

1

#

v2 #0

node

tail
1

next
0

v3 #0

node

tail

1

next
0

1

next
0

next
1

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

9 5 6 7 8

H T

0

1

#

v2 #0

node

tail
1

v3 #0

node

tail

1

1

next
0

next
1

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

9 5 6 7 8 13

H T

0

1

#

v2 #0

node

tail
1

v3 #0

node

tail

1

1

next
0

next
1

2

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

9 5 6 7 8 13 5 6 7 8

H T

0

1

#

v2 #0

node

v3 #0

node

tail

1

1

next
0

next

2

tail 2 0

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10

9 5 6 7 8 13 5 6 7 8 9 10

H T

0

1

#

v2 #0

node

v3 #

node

tail

1

1

next
0

next

2

tail 2 0

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 17

9 5 6 7 8 13 5 6 7 8 9 10

H T

0

1

#

v2 #0

node

v3 #

node

tail

1

1

next
0

next

2

tail 2 0

1

Concurrent Algorithms: A non-bloquing queue

E(v1)

E(v2)

E(v3)

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 17

9 5 6 7 8 13 5 6 7 8 9 10

H T

0

1

v2 #0

node

v3 #1

next

2

tail 2 0

1

Concurrent Algorithms: a non-bloquing queue

D(v?)

E(v2)

E(v3) 17

8 9 10

H T

0

v1
1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

2

Concurrent Algorithms: a non-bloquing queue

D(v?)

E(v2)

E(v3) 17

8 9 10

1 2 3 4 5 6

H T

0

v1
1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

2

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10

1 2 3 4 5 6 12

H T

0

v1
1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

2

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10

1 2 3 4 5 6 1213

H T

v1
1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

0 2

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10

1 2 3 4 5 6 121319

H T

v1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

0 2

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10

1 2 3 4 5 6 12131920

H T

v1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

0 2

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10 17

1 2 3 4 5 6 12131920

H T

v1

v2 #0

node

v3
1

next

0

tail
2

0

head next tail
0 1 2

0

3

Concurrent Algorithms: a non-bloquing queue

D(v1)

E(v2)

E(v3) 17

8 9 10 17

1 2 3 4 5 6 12131920

H T

v1

v2 #0

v3
1

0

head next tail
0 1 2

0

3

Concurrent Algorithms

Analysis needs to take into account several sources of difficulty:
I Arbitrary numbers of threads
I Infinite data domains
I Dynamic memory
I Memory model guaranteed by the machine
I ...

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representations for Infinite Sets of States

I Safety properties’
Violations representable
by finite traces

I Use a finite state
observer that
synchronizes with the
system

I Adding more threads still
violates the safety
property

Use upward closed sets as symbolic representations for states
violating safety properties

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

v

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

∅

∅

Symbolic Representation and Backward Analysis

Symbolic Representation and Backward Analysis

Pre∗()

Symbolic Representation and Backward Analysis

Pre∗()
inita

initb

initc

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤

c4

≤

X

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤

c4

≤

X

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤
c4

≤

X

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤
c4

≤

X

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤
c4

≤

X

Abstraction to Permit Symbolic Analysis

c1 c2

c3

≤
c4

≤

X

Abstraction and Backward Analysis

Pre∗()
inita

initb

initc

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

φ0 = Bad

i3

φ1

i2

φ2

i1

φ3

i0 = init

post(i1 ∧ φ2)

post(i0 ∧ φ3)

post(i2 ∧ φ1)

Counter Example Guided Abstraction Refinement

c1 c2

c3

≤

c4

≤

X

X X
≤

Counter Example Guided Abstraction Refinement

c1 c2

c3

≤
c4

≤

X

X X
≤

Counter Example Guided Abstraction Refinement

c1 c2

c3

≤
c4

≤

X

X X

≤

Counter Example Guided Abstraction Refinement

c1 c2

c3

≤
c4

≤

X

X X
≤

Outline

Introduction

Concurrent Algorithms

Symbolic Representation and Abstraction for Verification

Counter Example Guided Abstraction Refinement

Conclusion

Conclusion and Future Work

I Parallelization makes heavy use of concurrent algorithms

I We build automatic symbolic techniques to increase confidence
in concurrent algorithms

I Our techniques explore all interleavings for arbitrary numbers
of threads

I We obtained successful results and are working on the
verification of code found in widespread software, like the
java.util.concurrent package

Conclusion and Future Work

I Parallelization makes heavy use of concurrent algorithms
I We build automatic symbolic techniques to increase confidence

in concurrent algorithms

I Our techniques explore all interleavings for arbitrary numbers
of threads

I We obtained successful results and are working on the
verification of code found in widespread software, like the
java.util.concurrent package

Conclusion and Future Work

I Parallelization makes heavy use of concurrent algorithms
I We build automatic symbolic techniques to increase confidence

in concurrent algorithms
I Our techniques explore all interleavings for arbitrary numbers

of threads

I We obtained successful results and are working on the
verification of code found in widespread software, like the
java.util.concurrent package

Conclusion and Future Work

I Parallelization makes heavy use of concurrent algorithms
I We build automatic symbolic techniques to increase confidence

in concurrent algorithms
I Our techniques explore all interleavings for arbitrary numbers

of threads
I We obtained successful results and are working on the

verification of code found in widespread software, like the
java.util.concurrent package

	Introduction
	Concurrent Algorithms
	Symbolic Representation and Abstraction for Verification
	Counter Example Guided Abstraction Refinement
	Conclusion

