
Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Efficient Implementation of a
High-dimensional PDE-solver on

Multicore Processors

Magnus Gustafsson
Sverker Holmgren

Uppsala University
Division of Scientific Computing

November 26, 2009

Uppsala University - 1 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Framework for high-dimensional PDEs

• Trade-off: Generality ←→ (Parallel) Efficiency
• Want a little bit of each:

• Isolate independent components
• Object-oriented philosophy
• Choose performance-critical components at compile time

• Current (pilot) framework:
• Implemented in C
• Designed for clusters of multicore nodes

• Message passing (MPI) between distributed nodes
• OpenMP for worksharing within each node

Uppsala University - 2 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Clusters of multicore nodes

• Grand scale computing required for realistic problems

• Example node architecture, dual Intel Xeon E5430:

Uppsala University - 3 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Application: Quantum dynamics

• The Time-Dependent Schrödinger Equation (TDSE):

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t)

Ĥ = T̂ + V̂ = − ~2

2m
∇2 + V (r, t)

• Models wave-packets moving over potential surfaces
• Several potential surfaces + collision with laser pulses ...
• Goal: To model basic chemical reactions

Uppsala University - 4 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Application: Quantum dynamics

• Curse of dimensionality:

particles d = # spatial dimensions
2 1
3 3
4 6
5 9
...

...
n 3n − 6

• Example (memory requirements of a 4-particle system):
d = 6, n1 = ... = nd = 100, complex double precision
=⇒ 1006 ∗ 16B = 1012 ∗ 16B ≈ 16TB
— just to store the wavefunction!

Uppsala University - 5 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• Block-structured grid in d dimensions
• Currently employing an equidistant, static grid
• Choose block sizes w.r.t. cache sizes
• Adaptive grid refinement/coarsening to be implemented

Uppsala University - 6 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• Block-structured grid in d dimensions
• Currently employing an equidistant, static grid
• Choose block sizes w.r.t. cache sizes
• Adaptive grid refinement/coarsening to be implemented

Uppsala University - 6 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Outlook: Block-adaptive mesh refinement

Comparison of Parallelization Models for Structured Adaptive Mesh Refinement 617

Fig. 2. Block-based adaptive refinement, entire blocks with large local errors are refined.

from neighboring blocks, requiring interprocessor communication. The number of mes-
sages is minimized by collecting data, the ghost cells, from several blocks that are going
to the same processor into one large message. The communication is performed asyn-
chronously with MPI ISEND and MPI PROBE, i.e. each processor first sends out all
its messages with non-blocking calls and then probes for incoming messages receiving
them in first-come first-serve order. This minimizes the synchronization overheads.

When the grid resolution changes in any of the blocks the entire grid structure is
repartitioned and data redistributed, see Figure 3. A number of data partitioning meth-
ods are available, the recursive spectral bisection method (RSB) [13], the recursive co-
ordinate bisection method (RCB) [13], a bin-packing method [5], and different variants
of space filling curve techniques and diffusion schemes [12, 15, 16]. The performance of
the different partitioning techniques applied to the adaptive method have been evaluated
experimentally, see [16].

Three different parallelizations of the code with OpenMP exists. In a first imple-
mentation we have used a fine grained loop level parallelism within each block, i.e.,
all blocks are executed on all threads. The code inside the calls in lines 3, 4, 5, and
9 in Figure 1 are parallelized with OpenMP using the !$OMP PARALLEL DO direc-
tive for the grid points. This gives a one-dimensional parallelization of the blocks. (We
will refer to this version as OMP1.) There are no problems with load imbalance in this
version as long as the number of grid points in each dimension is large enough, but
as some blocks may contain relatively few grid points the parallel tasks become small
which can degrade the performance. Moreover, this version gives many synchronization
points compared to a coarse grained parallelization.

In a second implementation we have a parallelization over the blocks using the
!$OMP PARALLEL DO SCHEDULE directive for the lines 2 and 8 in Figure 1, i.e.
entire blocks are executed on single threads. (We will refer to this version as OMP2.)
Using STATIC scheduling gives a severe load imbalance as the blocks have different
number of grid points and work load. Using chunk size equal to one improves load bal-

Courtesy of J. Rantakokko, Uppsala University

Uppsala University - 7 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• High-order finite difference stencils

Uppsala University - 8 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Spatial discretization

• Data dependencies on block boundaries (ghost cells)
• High-dimensional ghost cell blocks
• Large memory overhead due to duplicated data

• Communicate data one dimension at a time
• Reuse allocated arrays for ghost data

• Nearest-neighbor communication

Uppsala University - 9 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Blocking

• Separate into equally-sized blocks,do one block at a time
• Will destroy prefetch strides

Uppsala University - 10 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling

• Partial blocking in the trailing dimension(s)
• Avoid breaking strides

Uppsala University - 11 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Tiling in 3D

• 2D tiles stacked on top of each other

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

OPTIMIZATION AND MODELING OF STENCIL COMPUTATIONS 135

(a) (b)

Fig. 3.3 (a) Partial 3D blocking using a series of 2D slices stacked up in the unblocked dimension,
K, where I is the unit-stride dimension. (b) Speedup results of partial 3D blocking for
1283, 2563, and 5123 grid sizes using optimal block sizes. Note that the Power5 utilized
the xlf compiler to maximize performance.

schemes when applied to three dimensions. Subdividing a 3D grid into cache blocks
results in many small blocks because blocksize3 doubles must fit in the cache, as
opposed to blocksize2 doubles when blocking in 2D. These small blocking factors
cause poor spatial locality because there are frequent discontinuities in the memory
stream. Rivera and Tseng attempted to sidestep this limitation by blocking in the
two least significant dimensions only (partial 3D blocking). This results in a series of
2D slices that are stacked up in the unblocked dimension, as shown in Figure 3.3(a).

In order to test the effectiveness of partial 3D blocking, we ran problem sizes up to
the largest that would fit in the physical memory of our machines. In Figure 3.3(b) we
see the best-case cache-blocked results relative to the unblocked version for grid sizes
of 1283, 2563, and 5123. The partial 3D blocking speeds up our stencil computation
for grid sizes of 5123 on the Itanium2 and the Opteron, while on the Power5 we obtain
no speedups for any of the three grid sizes (due to the huge L3 cache on the Power5,
as quantified in section 4.4). Observe that in all cases where blocking confers an
advantage, the Ith blocking dimension is equal to the grid size (i.e., maximized).

In order to understand which blocking factors are the most effective for a given
architectural configuration, we construct a simple analytical model to predict the cost
of memory traffic for a stencil-based computation.

4. Modeling Single Iteration Performance. In order to model the performance
of single iteration cache blocking, we begin by examining the performance of a sim-
pler microbenchmark that has a memory access pattern that nearly matches our
cache-blocking memory access pattern. We then use the insights gained from the
microbenchmark to construct a performance model for cache blocking.

4.1. Stanza Triad. In this section we explore prefetching behavior of modern
microprocessors using a simple microbenchmark called Stanza Triad (STriad). An
important trend in microprocessor architectures is the attempt to tolerate the in-
creased memory latency relative to clock frequency. Little’s law [11] asserts that in
order to fully utilize the total available bandwidth of the memory subsystem, the

Courtesy of Berkeley Benchmarking and Optimization group (BeBOP); bebop.cs.berkeley.edu

Uppsala University - 12 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Impact of tiling

1 2 4 6 8
200

400

600

800

1100

Number of cores

C
P

U
−

tim
e

(s
ec

.)

No blocking
Blocking
Tiling

Uppsala University - 13 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Temporal discretization

• The symmetric Lanczos algorithm
• Approximates a few of the most extremal eigenvalues
• Use this to compute e−iH at low computational cost

• Difficult to achieve massive scalability, since in each iter.
• Multiplication w. Hamiltonian matrix (nearest-neighbor)
• Two inner products (all-to-all)

Algorithm 1 The Lanczos Algorithm

v0 = 0
β0 = 0
v1 = Ψk / �Ψk�2
for j = 1, 2, . . . ,m do

r = Hvj − βj−1vj−1

αj = (r,vj)
r = r − αjvj

if j < m then
βj = �r�2
vj+1 = r / βj

end if
end for

Algorithm 2 The Modified Lanczos Algorithm

q0 = 0
r0 = Ψk / �Ψk�2
for j = 0, 1, 2, . . . ,m do

t = Arj

u = (t,rj)
v = (rj ,rj)
βj =

√
v

αj+1 = u/v
qj+1 = rj/βj

rj+1 = r/βj − βjqj − αj+1qj+1

end for

1

Uppsala University - 14 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

A modified Lanczos scheme

• According to Kim and Chronopoulos (1991):
• Restructure Lanczos’ algorithm and bring the two inner

products together
• Eliminates one synchronization point

Algorithm 1 The Lanczos Algorithm

v0 = 0
β0 = 0
v1 = Ψk / �Ψk�2
for j = 1, 2, . . . ,m do

r = Hvj − βj−1vj−1

αj = (r,vj)
r = r − αjvj

if j < m then
βj = �r�2
vj+1 = r / βj

end if
end for

Algorithm 2 The Modified Lanczos Algorithm

q0 = 0
r0 = Ψk / �Ψk�2
for j = 0, 1, 2, . . . ,m do

t = Arj

u = (t,rj)
v = (rj ,rj)
βj =

√
v

αj+1 = u/v
qj+1 = rj/βj

rj+1 = t/βj − βjqj − αj+1qj+1

end for

1

Uppsala University - 15 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Performance of modified Lanczos’

1 2 4 6 8
200

400

600

800

1100

Number of cores

C
P

U
−

tim
e

(s
ec

.)

Standard Lanczos
Optimized Lanczos

Uppsala University - 16 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Performance of modified Lanczos’

4 8 16 32
0

500

1000

1500

2000

2500

Number of cores

C
P

U
−

tim
e

(s
ec

.)

Standard Lanczos
Optimized Lanczos

Uppsala University - 17 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Outlook: s-step Lanczos

• Krylov subspace methods compute an orthonormal basis
where the vectors are computed one-by-one

span{y ,Ay ,Ay2, . . . ,Am−1y}

• What if we could compute several vectors at once?
• cf. Demmel et al. (2008)

• Kim and Chronopoulos (1991) proved that the Lanczos
algorithm can be reformulated in this way

• Reduces the number of synch. points by a factor of s
• Not implemented in parallel, but we have a working

MATLAB version

Uppsala University - 18 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

Conclusion

• Node-local performance is key to overall performance; so
that is where we need to optimize first

• Communication is expensive in modern parallel systems;
we aim at minimizing it

• Massive scalability is hard to achieve; might have to
rewrite old algorithms

• Future work:
• Implement s-step Lanczos in parallel
• Spatial adaptivity
• Analyze the impact of thread placement and scheduling

Uppsala University - 19 - Magnus Gustafsson

Introduction

Spatial
discretization

Temporal
discretization

Minimizing
communication

Conclusion

References

S. K. Kim and A. T. Chronopoulos.
A Class of Lanczos-like Algorithms Implemented
on Parallel Computers
Parallel Computing, 17 (1991).

J. Demmel, M. Hoemmen, M. Mohiyuddin and K. Yelick
Avoiding Communication in Sparse Matrix Computations
Proceedings of IEEE International Parallel and Distributed
Processing Symposium, April, 2008

Uppsala University - 20 - Magnus Gustafsson

	Introduction
	Spatial discretization
	Temporal discretization
	Minimizing communication
	Conclusion

