
Fixed-Priority Multiprocessor Scheduling
with Liu & Layland’s Utilization Bound

Nan Guan, Martin Stigge, Wang Yi

Uppsala University, Sweden

Outline

Problem

Previous Results

Our New Result

Scheduling of Multi-task System

multi-rate real-time task system

each task

ri
1 ri

2 ri
3 ri

4

Ti Ti

Ji
1 Ji

2 Ji
3

Ti

Ci Ci Ci

Utilization:

Liu and Layland’s Utilization Bound

Liu and Layland’s utilization bound for
single-processor scheduling [Liu1973]
(the 19th most cited paper in computer science)

: the number of tasks,
optimal

Multiprocessor Scheduling

Significantly more difficult

Bin-packing problem

Hard to identify the worst-case scenario

Suffer from timing anomalies

May lead to arbitrarily low utilization

Open Problem

find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

number of
processors

?

Multiprocessor Scheduling

52

1 6

8

4
new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

cpu 1 cpu 2 cpu 3

2

5

2

1

22

3

6

7

4

2 3

Partitioned Scheduling Partitioned Scheduling
with Task Splitting

Best Known Results

Best Known Results

Lehoczky et al. CMU
ECRTS 2009

Best Known Results

Our New Result

Lehoczky’s Algorithm[ECRTS’09]

sort all tasks in decreasing order of utilization

3

4

2

5

1

6

8

7

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

3

4

2

5

1

6

8

7

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

6

7

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

6

7

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

62

7
61

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

62

7
61

P2

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2

5

1

7
61

P2

62

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3

4

2
1

7
61

P2

5
62

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

3
2
1

7
61

P2

5
62

4

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

2
1

7
61

P2

5
62

4
3

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

1

7
61

P2

5
62

4
3
21

22highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

7
61

P2

5
62

4
3
21

P3

22

1
highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

7
61

P2

5
62

4
3
21

P3

1
22

highest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

7
61

P2

5
62

4
3
21

P3

1
22

key feature:
depth-first partitioning

with decreasing utilization orderhighest utilization

lowest utilization

Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many
tasks as possible

P1

8

7
61

P2

5
62

4
3
21

P3

1
22

Utilization Bound:

65%highest utilization

lowest utilization

Our Algorithm

width-first partitioning
with increasing priority order

Our Algorithm

sort all tasks in increasing priority order

7
6
5

4
3

2

1highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

7
6
5

4
3

2

1

P1 P2 P3

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

6
5

4
3

2

1

P1 P2 P3

7

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

5

4
3

2

1

P1 P2 P3

7 6

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

4
3

2

1

P1 P2 P3

7 6 5

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

3

2

1

P1 P2 P3

7 6 5
4

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

2

1

P1 P2 P3

7 6 5
4

3

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

1

P1 P2 P3

7 6 5
4

321

22

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

1

P1 P2 P3

7 6 5
4

321 22

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7 6 5
4

321

12

11
22

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7 6 5
4

321 1211
22

highest priority

lowest priority

Our Algorithm

select the processor on which the assigned
utilization is the lowest

P1 P2 P3

7 6 5
4

321 1211
22

highest priority

lowest priority
key feature:

width-first partitioning
with increasing prio order

Comparison

maximal number of task splitting
both are M-1

P1

8

7
61

P2

5
62

4
31

P3

1

2
32

P1 P2

3

P3

11

8
4
2

7 6

5

12

Ours: width-first Lehoczky’s: depth-first
(decreasing utilization order)(increasing priority order)

Comparison

Ours: width-first Lehoczky’s: depth-first

why is our algorithm better?

P1

8

7
61

P2

5
62

4
31

P3

1

2
32

P1 P2

3

P3

11

8
4
2

7 6

5

12

(increasing priority order) (decreasing utilization order)

Comparison

P1

8

7
61

P2

5
62

4
31

P3

1

2
32

P1 P2

3

P3

8
4
2

7 6

5

11
12

key point:
by our algorithm, split tasks generally
have high priorities on each processor

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)

Split Task

d

r d

r

P1

P2

P3

subtasks should be
executed in the

correct order

Split Task

synthetic utilization:

original utilization:

split tasks cause
“utilization increase”

Our Algorithm

intuition
high priority tasks have better chance to meet
their deadlines

P1 P2

… …

Our Algorithm

intuition
an extreme scenario:

each subtask has the highest priority on each
processor
can meet their deadlines anyway
no “utilization increase”

P1 P2

… …

Theorem

for a task set in with each task satisfies

reasonable constraint
in real-life systems

we have

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7
6

5

8

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7
6

5

8

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7

6

5

8

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7 6

5

8

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7 6

51

8
52

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7 6

51

8
52

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

4

3

2
1

7 6

51

8
52

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

43

2
1

7 6

51

8
52

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

43
2

1

7 6

51

8
52

Our Algorithm

problem of heavy tasks

P1 P2 P3

highest priority

lowest priority

43
21

7 6

51

8
52

The idea works for all tasks!

To get rid of the constraint

pre-assign tasks with high utilization

The idea works for all tasks!

5

4

3

2

1

P1 P2 P3

highest priority

lowest priority

The idea works for all tasks!

P1 P2 P3

highest priority

lowest priority

4

pre-assign
the heavy task

5

3

2

1

The idea works for all tasks!

P1 P2 P3

highest priority

lowest priority

3

2
5

1112

4

Theorem

By introducing the pre-assignment to the algorithm,
we have

Conclusion

Proposed multiprocessor scheduling algorithms
with Liu and Layland’s utilization bound

works on “light” task sets with a simple
width-first algorithm

works on any task set with a hybrid algorithm
pre-assigning

Conclusion

THANKS!

[Liu1973] C.L. Liu and James Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment
[Andersson03ECRTS] Bjorn Andersson, Jan Jonsson: The Utilization Bounds of
partitioned and Pfair Static-Priority Scheduling on multiprocessors are 50%.
ECRTS 2003: 33-40
[Andersson08OPODIS] Bjorn Andersson: Global Static-Priority Preemptive
Multiprocessor Scheduling with Utilization Bound 38%. OPODIS 2008: 73-88
[Andersson06RTCSA] Bjorn Andersson, Eduardo Tovar: Multiprocessor
Scheduling with Few preemption. RTCSA 2006: 322-334
[Andersson01RTSS] Bjorn Andersson, Sanjoy K. Baruah, Jan Jonsson: Static-
Priority Scheduling on multiprocessors. RTSS 2001: 193-202
[Baker05TPDS] Theodore P. Baker: An Analysis of EDF Schedulability on a
Multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8): 760-768 (2005)
[Lakshmanan09ECRTS] Karthik Lakshmanan, Ragunathan Rajkumar, John
Lehoczky Partitioned Fixed-Priority Preemptive Scheduling for Multi-core
Processors. ECRTS 20006
[Lopez04RTSS] J. M. Lopez, J. L. Diaz, and D. F. Garcia, ”Utilization Bounds for
EDF Scheduling on Real-Time Multiprocessor Systems”, RTSS 2004.
[Oh98] D. Oh and T. P. Baker. Utilization bounds for n-processor Rate Monotone
scheduling with static processor assignment. In Real-Time Systems, 1998.

	Fixed-Priority Multiprocessor Scheduling with Liu & Layland’s Utilization Bound
	Outline
	Scheduling of Multi-task System
	Liu and Layland’s Utilization Bound
	Multiprocessor Scheduling
	Open Problem
	Multiprocessor Scheduling
	Best Known Results
	Best Known Results
	Best Known Results
	Lehoczky’s Algorithm[ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Comparison
	Comparison
	Comparison
	Split Task
	Split Task
	Our Algorithm
	Our Algorithm
	Theorem
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	The idea works for all tasks!
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	Theorem
	Conclusion
	Conclusion
	Thanks!
	幻灯片编号 65

