
Fixed-Priority Multiprocessor Scheduling 
with Liu & Layland’s Utilization Bound

Nan Guan, Martin Stigge, Wang Yi

Uppsala University, Sweden



Outline

Problem

Previous Results

Our New Result



Scheduling of Multi-task System

multi-rate real-time task system

each task

ri
1 ri

2 ri
3 ri

4

Ti Ti

Ji
1 Ji

2 Ji
3

Ti

Ci Ci Ci

Utilization:



Liu and Layland’s Utilization Bound

Liu and Layland’s utilization bound for        
single-processor scheduling [Liu1973] 
(the 19th most cited paper in computer science)

: the number of tasks, 
optimal



Multiprocessor Scheduling

Significantly more difficult

Bin-packing problem

Hard to identify the worst-case scenario

Suffer from timing anomalies

May lead to arbitrarily low utilization



Open Problem

find a multiprocessor scheduling algorithm that 
can achieve Liu and Layland’s utilization bound

number of 
processors

?



Multiprocessor Scheduling
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Best Known Results



Best Known Results

Lehoczky et al. CMU
ECRTS 2009
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Lehoczky’s Algorithm[ECRTS’09]

sort all tasks in decreasing order of utilization

3

4

2

5

1

6

8

7

highest utilization

lowest utilization



Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many 
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Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many 
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Lehoczky’s Algorithm [ECRTS’09]

pick up one processor, and assign as many 
tasks as possible 
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Our Algorithm

width-first partitioning 
with increasing priority order



Our Algorithm

sort all tasks in increasing priority order
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Our Algorithm

select the processor on which the assigned 
utilization is the lowest

7
6
5

4
3

2

1

P1 P2 P3

highest priority

lowest priority
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Our Algorithm

select the processor on which the assigned 
utilization is the lowest
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key feature:

width-first partitioning
with increasing prio order



Comparison

maximal number of task splitting
both are M-1
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Comparison

Ours: width-first Lehoczky’s: depth-first

why is our algorithm better?
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key point:
by our algorithm, split tasks generally 
have high priorities on each processor

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)



Split Task
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Split Task

synthetic utilization:

original utilization:

split tasks cause 
“utilization increase”



Our Algorithm

intuition
high priority tasks have better chance to meet 
their deadlines

P1 P2

… …



Our Algorithm

intuition
an extreme scenario:

each subtask has the highest priority on each 
processor
can meet their deadlines anyway
no “utilization increase”

P1 P2

… …



Theorem

for a task set in with each task     satisfies

reasonable constraint 
in real-life systems

we have



Our Algorithm

problem of heavy tasks
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The idea works for all tasks!

To get rid of the constraint

pre-assign tasks with high utilization



The idea works for all tasks!
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The idea works for all tasks!
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The idea works for all tasks!
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Theorem

By introducing the pre-assignment to the algorithm, 
we have



Conclusion

Proposed multiprocessor scheduling algorithms 
with Liu and Layland’s utilization bound

works on “light” task sets with a simple       
width-first algorithm

works on any task set with a hybrid algorithm
pre-assigning 



Conclusion
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