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Liu and Layland’s Utilization Bound

[0 Liu and Layland’s utilization bound for

single-processor scheduling [Liu1973]
(the 19th most cited paper in computer science)

B N: the number of tasks, N — oo, O(N) = 69.3%
B optimal

4 )
» Ci/T; < N@2YN —1)

= the task set 1s schedulable

- J




Multiprocessor Scheduling

Significantly more difficult

Bin-packing problem

B Hard to identify the worst-case scenario

m Suffer from timing anomalies

B May lead to arbitrarily low utilization



Open Problem

[0 find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound
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Multiprocessor Scheduling
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Lehoczky’s Algorithmiecrrsioo;

1 sort all tasks in decreasing order of utilization
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2

lowest utilization

00
oy | A

N

highest utilization | 2




Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible
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key feature:
depth-first partitioning
with decreasing utilization order




Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

lowest utilization

highest utilization

A
P1 P2 P3
[/ \ ’)1 'I ||
61| | = II \l
l’ \\ 3 | ||
7 | : | |
: 4| -
8 | 15 \ 12!
A B w 5T \ 25

|
|
l

Utilization Bound:

65%0




Our Algorithm

width-first partitioning
with increasing priority order



Our Algorithm

1 sort all tasks in increasing priority order

lowest priority
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Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest
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Our Algorithm
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Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest
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Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

A key feature:
lowest priority width-first partitioning
with Increasing prio order
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Comparison

[ maximal number of task splitting

both are M-1
Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
P1 P2 P3 P1,--.. P27 P3
oo BN S B T A AT
13 7 | |1
““““ RN - SRRCRE ChEE o SN N
) | i i |2
8z e 8 5L S



Comparison

0 why iIs our algorithm better?

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
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Comparison

key point:
by our algorithm, split tasks generally
have high priorities on each processor

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
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Split Task
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Our Algorithm

1 intuition

B high priority tasks have better chance to meet
their deadlines

P1 P2




Our Algorithm

1 intuition

B an extreme scenario:

[l each subtask has the highest priority on each
processor

[0 can meet their deadlines anyway
1 no “utilization increase”

P1 P2
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Theorem

for a task set in with each task 7; satisfies
O(N)

U; <
~ 1+ O(N)

we have

i)

= the task set is schedulable

O(N)= N2~ —1) O(N) - 941 reasonable constraint
1 +6O(N) in real-life systems
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Our Algorithm

[l problem of heavy tasks
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The 1dea works for all tasks!

[0 To get rid of the constraint

O(N)
Ui s 1+ O(N)

B pre-assign tasks with high utilization



The 1dea works for all tasks!
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The 1dea works for all tasks!
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PEALA

Theorem

By introducing the pre-assignment to the algorithm,
we have

ZQ‘/Ta < N@YN 1)

M
= the task set is schedulable




Conclusion

[0 Proposed multiprocessor scheduling algorithms
with Liu and Layland’s utilization bound

B works on “light” task sets with a simple
width-first algorithm

B works on any task set with a hybrid algorithm
Llpre-assigning
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THANKS!
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