Fixed-Priority Multiprocessor Scheduling
with Liu & Layland’s Utilization Bound

Nan Guan, Martin Stigge, Wang Yi

Uppsala University, Sweden

Outline

[0 Problem

[Previous Results

[Our New Result

[0 multi-rate real-time task system

-

_

ay

T — e

1
1

ay
w T |m_

ay

TV — e

1
1

w UL —

calcla1e object
L
| 3
e

A
calculale object
1

|

ay

|

J

[0 each task

Utilization: C; /T;

— T, ———«— T, > T, >
«Ci > <+ Ci » <+ Ci —»
1] 1.2] J3]
- - - -
rt r2 r3 A

Liu and Layland’s Utilization Bound

[0 Liu and Layland’s utilization bound for

single-processor scheduling [Liu1973]
(the 19th most cited paper in computer science)

B N: the number of tasks, N — oo, O(N) = 69.3%
B optimal

4)
» Ci/T; < N@2YN —1)

= the task set 1s schedulable

- J

Multiprocessor Scheduling

Significantly more difficult

Bin-packing problem

B Hard to identify the worst-case scenario

m Suffer from timing anomalies

B May lead to arbitrarily low utilization

Open Problem

[0 find a multiprocessor scheduling algorithm that
can achieve Liu and Layland’s utilization bound

- \® <

> Ci/T; 1/N “
< N(2VN _1
~ 1" = the task set is schedulable
number of ‘o

pProcessors

Multiprocessor Scheduling

Global Scheduling Partitioned Scheduling

new task

waiting queug
é Q0

A

Partitioned Scheduling

with Task Splitting

il [E LE
B O B

B e @ @ et

oo [+ o B

cpul cpu?2 cpu3 cpul cpu?2 cpu3 cpul cpu?2 cpu3

ol
LFFSALA
MIVER II T

Best Known Results

80 Liu and Layland’s
Utilization Bound
M| = — e e e e e e e —_———————— -
60
50
40
30 65 66
[ECRTS'09] [RTCSA'06]
20 [TPDS'05] [ECRTS03] [RTSS04]
[OPODIS'08]
‘‘m B N B
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
H"""'--...,_‘_H_ _"/""—
Task Splitting
Global Partitoned | ——
=

Multiprocessor Scheduling

Best Known Results

80 Liu and Layland’s
Utilization Bound
M| = — e e e e e e e —_———————— -
60
50
40
66
30 65
[ECRTS'09] [RTCSA'06]
20 [TPDS'05] [ECRTS 03] [RTSS04]
[OF'ODIS 08]
10
\
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority’ Priority
‘-—._‘_‘_‘_‘_l“_\-‘- _"/""_
Tash Splitting
\
| Global | Partitione X

— Lehoczky et al. CMU
‘ Multiprocessor Scheduling ECRTS 2009

kg
LFFSALA
MIVER II |

Best Known Results

'y Of
80| " Liu and Layland’s
Our New Result S o Utilization Bound
70| =— — =~ —— — -
60
50
40
30 66
[RTCSA'06]
20 [TPDS'05] [ECRTS 03] [RTSS'04]
[OPODIS'08]
‘‘m M |
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
Hh‘h""‘--, _a",/-
Task Splitting
Global Partitioned —————
— =

Multiprocessor Scheduling

Lehoczky’s Algorithmiecrrsioo;

1 sort all tasks in decreasing order of utilization

00

lowest utilization

highest utilization

RIIN[W[H[|O]O | N

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

+

P1

lowest utilization | 8

highest utilization

RIIN[W[H[|O]O | N

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

P1

lowest utilization I

highest utilization

RIIN[W[H[|O]O | N

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1

lowest utilization

highest utilization

RIIN[W| S]|0]O

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
Pl
lowest utilization
61
=
— 8

highest utilization

HNUJ-bO'H%

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2
lowest utilization
61
=
I—| 8

highest utilization

HNUJ-bO'H%

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2
lowest utilization
61
=
8 ~
B2

highest utilization

RIIN[W]| S| O

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2

lowest utilization

00
0 O1

N

highest utilization

RIN|W] P~

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2

lowest utilization

00
oy | A

N

highest utilization | 2

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A
P1 P2

lowest utilization

~
Oa | b~ W

N

highest utilization | 2

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A

T
N

P1
61

lowest utilization

=

ﬂ
OO |~ [WN

N

highest utilization | 22

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A

T
N

P1 P3

61

lowest utilization

=

ﬂ
OO |~ [WN

N

22

highest utilization

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

A

T
N

P1 P3

61

lowest utilization

=

ﬂ
OO |~ [WN

\
N
N

highest utilization

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

lowest utilization

highest utilization

A

P1 PZ,,—-\ P3
// \ ')1 ,l ||
61 | 1 z |, \l
l’ \\ 3 | ||
7 | \ | |
: 4| -
8 ! 150 | s
.|| B2 \ 25

|
|
l

key feature:
depth-first partitioning
with decreasing utilization order

Lehoczky’s Algorithm [ecrrso9]

[J pick up one processor, and assign as many
tasks as possible

lowest utilization

highest utilization

A
P1 P2 P3
[/ \ ’)1 'I ||
61| | = II \l
l’ \\ 3 | ||
7 | : | |
: 4| -
8 | 15 \ 12!
A B w 5T \ 25

|
|
l

Utilization Bound:

65%0

Our Algorithm

width-first partitioning
with increasing priority order

Our Algorithm

1 sort all tasks in increasing priority order

lowest priority

RN |[[W[~]0 |0 N

highest priority

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

| P1 P2 P3

RN |[[W[~]0 |0 N

highest priority

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority T

highest priority

P1

P2

P3

RN [[WHA]|0 O

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

RN |[[W]h~] O

highest priority

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

RN WS

highest priority

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

o)~

highest priority | 1

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

highest priority

P1

P2

P3

w

o)~

)

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3

)

o)~

highest priority | 1

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

P1 P2 P3
21 52 3
A
V4 6 5

highest priority | 1

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

P1

P2

P3

w

highest priority -2

11
(22

4

6

)

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

lowest priority

Pl P2 P3
12 12
21 :24 3
4
V4 6 5

highest priority

Our Algorithm

[1 select the processor on which the assigned
utilization is the lowest

A key feature:
lowest priority width-first partitioning
with Increasing prio order

P1 P2 P3
e e T T TP TN
B — K 1 R S s =
o
7 = 5

e e e o

highest priority

Comparison

[maximal number of task splitting

both are M-1
Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
P1 P2 P3 P1,--.. P27 P3
oo BN S B T A AT
13 7 | |1
““““ RN - SRRCRE ChEE o SN N
) | i i |2
8z e 8 5L S

Comparison

0 why iIs our algorithm better?

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
P1 P2 P3 P1,--.. P27 P3
oo BN S B T A AT
13 7 | |1
““““ RN - SRRCRE ChEE o SN N
) | i i L2
8 |z e 8 |5l 15

Comparison

key point:
by our algorithm, split tasks generally
have high priorities on each processor

Ours: width-first Lehoczky’s: depth-first
(increasing priority order) (decreasing utilization order)
P1 P2 P3 P1 P2 P3

3 7 1
4 5 4 "
8 8 5
! 6 m— [

Split Task

Ti
"Q
PL 7l
l
P2 1
.
: |
P3| ‘
r

subtasks should be

executed in the
correct order

Split Task

A
~

A 4

N _____

original utilization: ¥ = cF /T,

synthetic utilization: ¥ = & / Ak

1 1

split tasks cause

“utilization INncrease”

Our Algorithm

1 intuition

B high priority tasks have better chance to meet
their deadlines

P1 P2

Our Algorithm

1 intuition

B an extreme scenario:

[l each subtask has the highest priority on each
processor

[0 can meet their deadlines anyway
1 no “utilization increase”

P1 P2

&
LIFPSALA

Theorem

for a task set in with each task 7; satisfies
O(N)

U; <
~ 1+ O(N)

we have

i)

= the task set is schedulable

O(N)= N2~ —1) O(N) - 941 reasonable constraint
1 +6O(N) in real-life systems

lowest priority

highest priority

Our Algorithm

00

\I

o)

P1 P2

)

P3

RN WA

lowest priority

highest priority

Our Algorithm

O N

P1 P2

)

P3

RN WA

Our Algorithm

[l problem of heavy tasks

A

lowest priority L& P1 P2

)

P3

RN WA

highest priority

Our Algorithm

[l problem of heavy tasks

A

lowest priority P1 P2

P3

)

RN WA

highest priority

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1

51

P2

P3

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1

51

P2

P3

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1

51

P2

P3

o)~

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1 P2

P3

51 3

o)~

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1 P2

P3

51 3

o)~

Our Algorithm

[l problem of heavy tasks

lowest priority

highest priority

A

P1 P2

P3

51

o)~

The 1dea works for all tasks!

[0 To get rid of the constraint

O(N)
Ui s 1+ O(N)

B pre-assign tasks with high utilization

The 1dea works for all tasks!

lowest priority

4 P1 P2 P3

highest priority | 1

The 1dea works for all tasks!

lowest priority

highest priority

P1

A4

re-assign
th% heavytask

P2

P3

The 1dea works for all tasks!

lowest priority

P1 P2 P3

highest priority

PEALA

Theorem

By introducing the pre-assignment to the algorithm,
we have

ZQ‘/Ta < N@YN 1)

M
= the task set is schedulable

Conclusion

[0 Proposed multiprocessor scheduling algorithms
with Liu and Layland’s utilization bound

B works on “light” task sets with a simple
width-first algorithm

B works on any task set with a hybrid algorithm
Llpre-assigning

kg
LFFSALA
MIVER II |

Conclusion
80 Liu and Layland’s
Utilization Bound
70| = e e e e e —————— —— — -
60
50
40
30 66
[RTCSA'06]
20 [TPDS'05] [ECRTS03] [RTSS04]
[OPODIS'08]
‘‘m B N N
Fixed Dynamic Fixed Dynamic Fixed Dynamic
Priority Priority Priority Priority Priority Priority
Hhﬁ"""--, _-"I/_
Task Splitting
Global Partitoned | ——
=

Multiprocessor Scheduling

THANKS!

ur
LIMIVERSK

A
TET

[Liul973] C.L. Liu and James Layland, Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment

[AnderssonO3ECRTS] Bjorn Andersson, Jan Jonsson: The Utilization Bounds of
partitioned and Pfair Static-Priority Scheduling on multiprocessors are 50%.
ECRTS 2003: 33-40

[Andersson080OPODIS] Bjorn Andersson: Global Static-Priority Preemptive
Multiprocessor Scheduling with Utilization Bound 38%. OPODIS 2008: 73-88

[AnderssonO6RTCSA] Bjorn Andersson, Eduardo Tovar: Multiprocessor
Scheduling with Few preemption. RTCSA 2006: 322-334

[AnderssonO1RTSS] Bjorn Andersson, Sanjoy K. Baruah, Jan Jonsson: Static-
Priority Scheduling on multiprocessors. RTSS 2001: 193-202

[BakerO5TPDS] Theodore P. Baker: An Analysis of EDF Schedulability on a
Multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8): 760-768 (2005)

[LakshmananO9ECRTS] Karthik Lakshmanan, Ragunathan Rajkumar, John
Lehoczky Partitioned Fixed-Priority Preemptive Scheduling for Multi-core
Processors. ECRTS 20006

[LopezO4RTSS] J. M. Lopez, J. L. Diaz, and D. F. Garcia, "Utilization Bounds for
EDF Scheduling on Real-Time Multiprocessor Systems”, RTSS 2004.

[Oh98] D. Oh and T. P. Baker. Utilization bounds for n-processor Rate Monotone
scheduling with static processor assignment. In Real-Time Systems, 1998.

	Fixed-Priority Multiprocessor Scheduling with Liu & Layland’s Utilization Bound
	Outline
	Scheduling of Multi-task System
	Liu and Layland’s Utilization Bound
	Multiprocessor Scheduling
	Open Problem
	Multiprocessor Scheduling
	Best Known Results
	Best Known Results
	Best Known Results
	Lehoczky’s Algorithm[ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Lehoczky’s Algorithm [ECRTS’09]
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Comparison
	Comparison
	Comparison
	Split Task
	Split Task
	Our Algorithm
	Our Algorithm
	Theorem
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	Our Algorithm
	The idea works for all tasks!
	幻灯片编号 58
	幻灯片编号 59
	幻灯片编号 60
	Theorem
	Conclusion
	Conclusion
	Thanks!
	幻灯片编号 65

