
Institute for Integrated Signal Processing Systems

A Co-Simulation Framework for
MPSoC Run-Time Behavior

Analysis in Early System Design

Anastasia Stulova, Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng,

Rainer Leupers

MCC09

26 Nov 2009

Outline

� A Brief Introduction of the MAPS Project
� A High-level Virtual Platform (HVP)

� OS Modeling with HVP
� Motivation and Related Work
� A Virtual OS Model
� Scheduler and Timing Model

� A Tool Demonstration
� Conclusions and Future Work

3

MAPS - MPSoC Application Programming Studio

� MAPS is a research project at RWTH Aachen University
which targets at the problem of MPSoC software
development

MPSoC
Software

Development

4

A High-Level Virtual Platform (HVP)

� C applications are directly compiled by the HVP spe cific
toolchain into dynamic libraries

� determines virtual execution time

� The SystemC based HVP simulator dynamically loads th e
compiled binaries
� Configurations can be stored as XML files for recon figuration
� A virtual IO device is available, which can be used to visualize the
execution result directly

App1
.c

App1
.c

App2
.c

App2
.c

HVP Simulator

App-1
.c

App-1
.c

App-1
.so

Dynamic Load

App-n
.c

App-n
.c

App-n
.so

HVP Toolchain

Configuration
File (XML)

Configuration
File (XML)

HVP
GUI

Virtual
IO

5

Role of OS in ESL

� Why simulating OS in Early System Design?
� It changes behavior of the system by determining execution

order of tasks
� It contributes with the execution time latency

� Embedded OS/RTOS in Multi-Core Era

Centralized Distributed

Generic

Specific

HW

SW

© A Quick Safari Through the MPSoC Run-Time Managemen t Jungle, Vincent Nollet, Diederik Verkest,
Henk Corporaal, Journal of Signal Processing Systems, Springer New York, November 2008

� Two major design flows:
� Selection from existing products
� Synthesis (MAPS, SHAPES)

6

Related Works

� OS model as an SLDL extension:
� A. Gerstlauer et al, F. Hessel et al, Y. Yi et al

� Generic OS in tools:
� VPU Coware, MESH, R. Le Moigne CoFluent StudioTM

� Main limitations:
� Centralized and migrative scheduling schemes are not

supported by most frameworks
� Retargetability is poorly addressed
� No statistics dedicated to the OS designer

7

A Virtual OS Model

� Modeled components:
� Task Management
� Task Scheduling

� Represented by:
� APIs to the application designer:

� Tasks Communication, Synchronization, Scheduling
� SystemC Simulator:

HVP Simulator

Task1

App1
.so

Task2

App2
.so

VPE-1

Task3

App3
.so

Task4

App4
.so

VPE-2

RTM
Scheduling

Policy
.so

Scheduler

STD_Sched_
library

� VPE – Virtual Processing Element

� RTM - Run-Time Manager

8

OS Scheduler

� Scheduling event – a change in the simulator which m ight cause
rescheduling of tasks in the system:
� Ex: task state transition; change of VPE param; end of a time

slice; task arrival/termination;

� Determines a type of the event

� Scheduling function:
� update_sched(sched_evnt) → (sched_matr, ts_vect)
� sched_evnt is a touple (time_stamp, evnt_type,Taski,VPEi)
� sched_matr is a NT x NVPE matrix (determines task dispatching to

VPEs)
� NT – the number of tasks in the system;
� NVPE – the number of VPEs in the platform;

� ts_vect – a vector with time slice values for the next task
activations (size NT)

� Called by RTM every time scheduling event arrives

� Fully customizable by the user

Example of Centralized Control
TaskA
TaskB
TaskC

OS Timing Model

Migration Penalty:
� Parameterized by a constant

value (one value per each pair
of processors and a task)

� Considered only if a task
migrates b/w VPEs

9

Slave-VPE Master-VPE RTM

switch(TaskC)

sched_update()

sched_evnt2switch(OS)

sched_update()

sched_evnt1switch(OS)

switch(TaskB)

Save/Load task context time:
� Parameterizable via

a configuration file

Scheduling Latency:
� Delay annotation

HVPConsumeTime(int cycles);
� Scheduling code

instrumentation

-> counts virtual # cycles
scheduling code takes (as HVP
toolchain)

SW Demo

11

Conclusions

� A generic OS model which enables to model a broad rang e
of run-time management schemes was presented

� OS scheduling type and timing behavior can be easily
changed

� The OS model was successfully integrated into the HVP
tool

� We provide various “on-the-fly” and post execution
information about system behavior to be analyzed by OS
and application developers

12

Future Work

� Evaluate the accuracy of the trend prediction w.r.t I SS
Virtual Platforms and real HW

� Facilitate a more accurate model of the task migratio n
penalty (including automatic migration time computa tion)

Thank you !

