

## A Co-Simulation Framework for MPSoC Run-Time Behavior Analysis in Early System Design

Anastasia Stulova, Jianjiang Ceng, Jeronimo Castrillon, Weihua Sheng,

Rainer Leupers MCC09 26 Nov 2009



Institute for Integrated Signal Processing Systems

#### Outline

- A Brief Introduction of the MAPS Project
- A High-level Virtual Platform (HVP)
- OS Modeling with HVP
  - Motivation and Related Work
  - A Virtual OS Model
  - Scheduler and Timing Model
- A Tool Demonstration
- Conclusions and Future Work





#### MAPS - MPSoC Application Programming Studio

MAPS is a research project at RWTH Aachen University which targets at the problem of MPSoC software development







## A High-Level Virtual Platform (HVP)



C applications are directly compiled by the HVP specific toolchain into dynamic libraries

- determines virtual execution time
- The SystemC based HVP simulator dynamically loads the compiled binaries
- Configurations can be stored as XML files for reconfiguration
- A virtual IO device is available, which can be used to visualize the execution result directly





#### Role of OS in ESL

## Why simulating OS in Early System Design?

- It changes behavior of the system by determining execution order of tasks
- It contributes with the execution time latency

## Embedded OS/RTOS in Multi-Core Era

© A Quick Safari Through the MPSoC Run-Time Management Jungle, Vincent Nollet, Diederik Verkest, Henk Corporaal, Journal of Signal Processing Systems, Springer New York, November 2008



- Two major design flows:
  - Selection from existing products
  - Synthesis (MAPS, SHAPES)





#### **Related Works**

- OS model as an SLDL extension:
  - A. Gerstlauer et al, F. Hessel et al, Y. Yi et al
- Generic OS in tools:
  - VPU Coware, MESH, R. Le Moigne CoFluent Studio<sup>TM</sup>
- Main limitations:
  - Centralized and migrative scheduling schemes are not supported by most frameworks
  - Retargetability is poorly addressed
  - No statistics dedicated to the OS designer



#### A Virtual OS Model

#### Modeled components:

- Task Management
- Task Scheduling
- Represented by:
  - APIs to the application designer:
    - Tasks Communication, Synchronization, Scheduling
  - SystemC Simulator:



VPE – Virtual Processing Element



RTM - Run-Time Manager



#### **OS Scheduler**

- Scheduling event a change in the simulator which might cause rescheduling of tasks in the system:
  - Ex: task state transition; change of VPE param; end of a time slice; task arrival/termination;
    - → Determines a type of the event
- Scheduling function:
  - update\_sched(sched\_evnt) → (sched\_matr, ts\_vect)
  - sched\_evnt is a touple (time\_stamp, evnt\_type, Task<sub>i</sub>, VPE<sub>i</sub>)
  - sched\_matr is a  $N_T x N_{VPE}$  matrix (determines task dispatching to VPEs)
    - $N_{T}$  the number of tasks in the system;
    - N<sub>VPE</sub> the number of VPEs in the platform;
  - ts\_vect a vector with time slice values for the next task activations (size N<sub>T</sub>)
  - Called by RTM every time scheduling event arrives
  - → Fully customizable by the user





## **OS Timing Model**

#### Save/Load task context time:

 Parameterizable via a configuration file

#### Scheduling Latency:

- Delay annotation HVPConsumeTime(int cycles);
- Scheduling code instrumentation
  - -> counts virtual # cycles scheduling code takes (as HVP toolchain)

#### Migration Penalty:

- Parameterized by a constant value (one value per each pair of processors and a task)
- Considered only if a task migrates b/w VPEs

#### **Example of Centralized Control**







#### SW Demo







#### Conclusions

- A generic OS model which enables to model a broad range of run-time management schemes was presented
- OS scheduling type and timing behavior can be easily changed
- The OS model was successfully integrated into the HVP tool
- We provide various "on-the-fly" and post execution information about system behavior to be analyzed by OS and application developers





#### Future Work

- Evaluate the accuracy of the trend prediction w.r.t ISS Virtual Platforms and real HW
- Facilitate a more accurate model of the task migration penalty (including automatic migration time computation)





# Thank you !



