
Thread-Level Speculation for Web Applications

Jan Kasper Martinsen and Håkan Grahn

Blekinge Institute of Technology

jkm@bth.se, hgr@bth.se

mailto:jkm@bth.se
mailto:hgr@bth.se

Two important trends,

Web Applications and multicore computing,

Web Applications,

JavaScript, add some interactivity to web

pages …

…however since then, a large number of

applications have been developed (gmail,

facebook,youtube…)

It has it’s charm...

Multicore computing,

We get more computing power, however there

is a catch…

Multicore programming, often regarded as a

black art

…We can’t escape it!

Multicore and Web Applications

Multicore → system programmers

Web Application → web designers

A pedagogical challenge?

“Concurrent programming for web designers”

anyone?

High level question:

Can we hide the details, and still take

advantage of multicore computing?

Thread Level Speculation seems to have some

promise…

Idea, detect sections(at runtime), that can be

parallelized

We know the runtime idea from Just in Time

(JIT) compliation…

While the penalty of “wrongly” JIT is execution

speed…

…The penalty of TLS is program correctness!!

while(1){

int x = hashlist[key1]

hashlist[key2] = y

}

int x =

hashlist[5]

hashlist[6]=y

int x =

hashlist[3]

hashlist[21]=y

int x =

hashlist[2]

hashlist[30]=y

int x =

hashlist[6]

hashlist[23]=y

Ooops!

We have played around with these ideas in a

Python based JavaScript interpreter

It seems that TLS have not been tried out in

interpreters

Our idea was to use information found in the

source code to speculate (i.e., execute by

traversion)

For instance:

for(var i=0;i<64;i++){ …



for(var i=0;i<16;i++){ …

for(var i0=16;i0<32;i0++){ …

for(var i1=32;i1<48;i1++){ …

for(var i2=48;i2<64;i2++){ …

For a selected set of selected benchmarks it

has advantages and the results from the

simulations are quite good…

If we divide the first for-loop, we get the

following work distribution

Since we have information from the source

code, we can go handle nested for-loops …

Our own benchmarks, with simulated

concurrency disregards a series (important)

factors…

We have started to look into integrating these

ideas into TraceMonkey

Perhaps some mid-level between source code

and byte code is needed?

What about the benchmarks?

