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Codeplay background

• Compiler company 
based in Edinburgh, 
Scotland

• 8 years experience in C/C++ and shader compilers
• Target special-purpose parallel hardware architectures

– PlayStation®2
– Ageia PhysX
– Cell BE, PlayStation®3
– Multi-core processors
– x86: SSE, MMX, 3DNow!

• Have developed technology to simplify application 
deployment on complex & evolving parallel systems

Cellfactor game
from Ageia

Codeplay’s 
office in 
central 
Edinburgh
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Outline

• Challenge of programming for ‘host and 
accelerators’

• Offload C++
• Automatic Call Graph Duplication
• Methodology for Offloading C++
• Conclusion & Questions
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Porting Software to Multi-core

• Challenges
– Maintain portability, limit scope of change
– Hardware limitations
– Scope for error: less static checking
– Explicit management of data transfers
– Time consuming

• Hard to adapt existing concurrent software
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Offload C++

• Conservative C++ extension
– Applicable to existing code bases
– Can #define extensions out of code

• Targets heterogeneous cores
– Host core + accelerator cores
– Distinct memory spaces

• Programming model
– Migrate a host thread onto an accelerator
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Offload Blocks

Parameters
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Offload Blocks

Access host memory
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Offload Blocks

Call graph duplication
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Automatic Call Graph Duplication

• Compiles for host and accelerator
• Adapts code to handle distinct memory spaces

– Produces ‘offload’ duplicates to run on accelerator

• Automation
– Time saving / Enable experimentation
– Increase the amount of code offloaded
– Reduce scope of modifications to program code
– Keep a single version of program source code
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Multiple Memory Spaces in C++

• C++ assumes a single memory space
• Not true for ‘hosts and accelerators’

– May have a multi-level memory hierarchy
• Introduces scope for programmer error

– Confusion of pointers to different memory 
spaces

• Interacts badly with C++
– function pointers / vtables
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Offload C++ and Pointers

• Distinct kinds of pointers & references
– __outer and local pointers (host, accelerator)
– Enable output of data transfer operations

• Incompatible at the type level
– int *p; int __outer *q;
– p = q; // Type error
– q = p; // Type error
– *q = *p; // OK; data transfer!
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Offload C++ and Pointers (2)

• Passing pointers/references as parameters
– int f(int &x, int&y) { return a*b;}
– f(a,b);

• Compiler generates duplicates on demand
– offload int f(int &x, int&y) { return a*b;}
– offload int f(int _outer&x, int&y) { return a*b;}
– offload int f(int &x, int _outer&y) { return a*b;}
– offload int f(int _outer&x, int _outer&y) { return a*b;}
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Type Inference in Functions

• Inference propagates __outer 
– across initialisation
– and casts

• Inference 
failure leads
to compile
error
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Accelerator Specific features

• How to use non-portable features directly?
• In an offload context: 

– inside an offload block, or in a function called 
directly or indirectly inside an offload block

• Dual C++ dialects
– host and accelerator
– Allow accelerator dialect in an offload context 



Offload C++  : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Overloading Call Graph Duplication

• Overload portable functions
– void f() {…};
– offload void f() {…};

• Overload selected function duplicates
– void f(int *p, int *q) {…};
– offload void f(int *p, int *q) {…};

• offload functions callable in an offload 
context
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Offloading Virtual Methods

• Call graph duplication of late bound calls
– function pointers / virtual methods

• Limited code space
• Offload block ‘domains’

– select functions to duplicate for indirect calls
– Lookup accelerator implementation via host 

address
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Domains Example
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Offloading in Large Codebases

• Duplication of functions across compilation 
units
– Extended function attributes

• Calling host only routines
– Duplication requires source code

• Overlays
– Support for limited accelerator code memory



Offload C++  : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology

1. Get code on the accelerator
2. Tune for performance on a single 

accelerator
3. Algorithm restructuring and inlining
4. Accelerator specific optimisations
5. Parallelise
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Offloading to Accelerators

Divide work

Spawn offload threads

Host awaits for thread exits
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Offload C++ for Cell BE

• PS3® GameOS and Cell Linux
• Optimising Single Source C++ Compiler

– Interoperable with GCC
– Altivec®, Cell intrinsics
– Generates C with Cell intrinsics / data types
– Translates PPE vmx to SPE simd
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Ease of Offloading

• Offloading should be quick, easy
• Applied to a AAA PS3® Game Renderer

– In two hours
– ~800 functions
– ~170KB SPE object code
– ~45% of host performance on a single SPE

• Plenty of scope for Cell specific 
optimisations to follow that
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Conclusion

• Future work
– GPU, Other, Compile to OpenCL.

• Offloading can be simple 
– even late bound calls across compilation units
– complex dynamic data structure processing 
– type checking data transfer code
– no extensive modifications to code
– can use accelerator specific code too
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Offload C++ for Cell
• http://offload.codeplay.com/

Questions?

http://offload.codeplay.com/�
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Offloading Methodology (1)

• Enclose the code in an offload scope
• Assist compiler if needed to compile
• Add domain entries for late bound calls

• Use syntax extensions in macros
• Compare offload versus host code
• Keeps code portable to other compilers

• Check behaviour / performance vs host
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Offloading Methodology (2)

• Reduce offload accesses to host memory
• default access is via a software cache
• offload block arguments
• Make effective use of fast local storage
• typesafe templates for data access use cases

• Compiler can report outer accesses
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Offloading Methodology (3)

• Compiler optimisation 
• e.g. inlining

• Algorithm restructuring
• portable code may not be good on 

accelerator
• accelerator cores specialised
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Offloading Methodology (4)

• Accelerator specific optimisations
• Introduce non-portable code

• Needs some expertise
• SIMDize code
• Restructure data for efficient access
• Consider data transfer strategies

• e.g. double buffering

• Like directly programming the accelerator
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Offloading Methodology (5)

• Parallelise for multiple accelerators
• Similar to multi-threading

• If already parallelised, offload the threads
• Target threads for available accelerators
• May be worth parallelising before 

optimising individual offloads
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