
Codeplay Software Ltd
2nd Floor, 45 York Place
Edinburgh, EH1 3HP
United Kingdom
Tel: +44(0)131 466 0506www.codeplay.com

The Offload C++ Programming System

George Russell,
Compiler Engineer,

Codeplay

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Codeplay background

• Compiler company
based in Edinburgh,
Scotland

• 8 years experience in C/C++ and shader compilers
• Target special-purpose parallel hardware architectures

– PlayStation®2
– Ageia PhysX
– Cell BE, PlayStation®3
– Multi-core processors
– x86: SSE, MMX, 3DNow!

• Have developed technology to simplify application
deployment on complex & evolving parallel systems

Cellfactor game
from Ageia

Codeplay’s
office in
central
Edinburgh

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Outline

• Challenge of programming for ‘host and
accelerators’

• Offload C++
• Automatic Call Graph Duplication
• Methodology for Offloading C++
• Conclusion & Questions

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

‘Host and Accelerators’

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

‘Host and Accelerators’

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

‘Host and Accelerators’

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Porting Software to Multi-core

• Challenges
– Maintain portability, limit scope of change
– Hardware limitations
– Scope for error: less static checking
– Explicit management of data transfers
– Time consuming

• Hard to adapt existing concurrent software

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload C++

• Conservative C++ extension
– Applicable to existing code bases
– Can #define extensions out of code

• Targets heterogeneous cores
– Host core + accelerator cores
– Distinct memory spaces

• Programming model
– Migrate a host thread onto an accelerator

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload Blocks

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload Blocks

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload Blocks

Parameters

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload Blocks

Access host memory

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload Blocks

Call graph duplication

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Automatic Call Graph Duplication

• Compiles for host and accelerator
• Adapts code to handle distinct memory spaces

– Produces ‘offload’ duplicates to run on accelerator

• Automation
– Time saving / Enable experimentation
– Increase the amount of code offloaded
– Reduce scope of modifications to program code
– Keep a single version of program source code

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Multiple Memory Spaces in C++

• C++ assumes a single memory space
• Not true for ‘hosts and accelerators’

– May have a multi-level memory hierarchy
• Introduces scope for programmer error

– Confusion of pointers to different memory
spaces

• Interacts badly with C++
– function pointers / vtables

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload C++ and Pointers

• Distinct kinds of pointers & references
– __outer and local pointers (host, accelerator)
– Enable output of data transfer operations

• Incompatible at the type level
– int *p; int __outer *q;
– p = q; // Type error
– q = p; // Type error
– *q = *p; // OK; data transfer!

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload C++ and Pointers (2)

• Passing pointers/references as parameters
– int f(int &x, int&y) { return a*b;}
– f(a,b);

• Compiler generates duplicates on demand
– offload int f(int &x, int&y) { return a*b;}
– offload int f(int _outer&x, int&y) { return a*b;}
– offload int f(int &x, int _outer&y) { return a*b;}
– offload int f(int _outer&x, int _outer&y) { return a*b;}

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Type Inference in Functions

• Inference propagates __outer
– across initialisation
– and casts

• Inference
failure leads
to compile
error

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Accelerator Specific features

• How to use non-portable features directly?
• In an offload context:

– inside an offload block, or in a function called
directly or indirectly inside an offload block

• Dual C++ dialects
– host and accelerator
– Allow accelerator dialect in an offload context

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Overloading Call Graph Duplication

• Overload portable functions
– void f() {…};
– offload void f() {…};

• Overload selected function duplicates
– void f(int *p, int *q) {…};
– offload void f(int *p, int *q) {…};

• offload functions callable in an offload
context

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Virtual Methods

• Call graph duplication of late bound calls
– function pointers / virtual methods

• Limited code space
• Offload block ‘domains’

– select functions to duplicate for indirect calls
– Lookup accelerator implementation via host

address

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Domains Example

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Domains Example

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading in Large Codebases

• Duplication of functions across compilation
units
– Extended function attributes

• Calling host only routines
– Duplication requires source code

• Overlays
– Support for limited accelerator code memory

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology

1. Get code on the accelerator
2. Tune for performance on a single

accelerator
3. Algorithm restructuring and inlining
4. Accelerator specific optimisations
5. Parallelise

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading to Accelerators

Divide work

Spawn offload threads

Host awaits for thread exits

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload C++ for Cell BE

• PS3® GameOS and Cell Linux
• Optimising Single Source C++ Compiler

– Interoperable with GCC
– Altivec®, Cell intrinsics
– Generates C with Cell intrinsics / data types
– Translates PPE vmx to SPE simd

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Ease of Offloading

• Offloading should be quick, easy
• Applied to a AAA PS3® Game Renderer

– In two hours
– ~800 functions
– ~170KB SPE object code
– ~45% of host performance on a single SPE

• Plenty of scope for Cell specific
optimisations to follow that

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Conclusion

• Future work
– GPU, Other, Compile to OpenCL.

• Offloading can be simple
– even late bound calls across compilation units
– complex dynamic data structure processing
– type checking data transfer code
– no extensive modifications to code
– can use accelerator specific code too

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offload C++ for Cell
• http://offload.codeplay.com/

Questions?

http://offload.codeplay.com/�

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology (1)

• Enclose the code in an offload scope
• Assist compiler if needed to compile
• Add domain entries for late bound calls

• Use syntax extensions in macros
• Compare offload versus host code
• Keeps code portable to other compilers

• Check behaviour / performance vs host

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology (2)

• Reduce offload accesses to host memory
• default access is via a software cache
• offload block arguments
• Make effective use of fast local storage
• typesafe templates for data access use cases

• Compiler can report outer accesses

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology (3)

• Compiler optimisation
• e.g. inlining

• Algorithm restructuring
• portable code may not be good on

accelerator
• accelerator cores specialised

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology (4)

• Accelerator specific optimisations
• Introduce non-portable code

• Needs some expertise
• SIMDize code
• Restructure data for efficient access
• Consider data transfer strategies

• e.g. double buffering

• Like directly programming the accelerator

Offload C++ : Programming Heterogeneous and Homogeneous Multi-core Systems

November 2009

Offloading Methodology (5)

• Parallelise for multiple accelerators
• Similar to multi-threading

• If already parallelised, offload the threads
• Target threads for available accelerators
• May be worth parallelising before

optimising individual offloads

	The Offload C++ Programming System
	Codeplay background
	Outline
	‘Host and Accelerators’
	‘Host and Accelerators’
	‘Host and Accelerators’
	Porting Software to Multi-core
	Offload C++
	Offload Blocks
	Offload Blocks
	Offload Blocks
	Offload Blocks
	Offload Blocks
	Automatic Call Graph Duplication
	Multiple Memory Spaces in C++
	Offload C++ and Pointers
	Offload C++ and Pointers (2)
	Type Inference in Functions
	Accelerator Specific features
	Overloading Call Graph Duplication
	Offloading Virtual Methods
	Domains Example
	Domains Example
	Offloading in Large Codebases
	Offloading Methodology
	Offloading to Accelerators
	Offload C++ for Cell BE	
	Ease of Offloading
	Conclusion
	Questions?
	Offloading Methodology (1)
	Offloading Methodology (2)
	Offloading Methodology (3)
	Offloading Methodology (4)
	Offloading Methodology (5)

