
Brushing the Locks out of the Fur:

A Lock-Free Work Stealing

Library Based on Wool

Håkan Sundell
University College of Borås

Parallel Scalable Solutions AB

Philippas Tsigas
Chalmers University of Technology

2

Outline

 Synchronization of Shared Data

 Task Parallelism Library

 Light-Weight

 Previous Work

 The Wool Library

 Architecture

 Synchronization

 Wool with Lock-Free Synchronization

 Experiments

 Conclusions

3

Parallel (e.g. Multi-threaded)

Software

 Programs consist of many tasks (threads)

 That execute on one or more (logical)

processors

4

Critical Sections

 Problem: operations on shared variables
in programming languages are not
atomic.

 Straightforward solution: Apply mutual exclusion

counter=counter+1; Read + Write=

Read 1 +

+ Write 2

Write 2Task 1:

Task 2: Read 1

counter=2,

but should be 3!

Read 1 +

+ Write 3

Write 2Task 1:

Task 2: Read 2

LOCK

LOCK

!

5

Critical Sections +

Scheduling

 Blocking. More advanced and

pessimistic schedulability analysis.

 Deadlocks. Reduced fault-tolerance,

if one task fails, other (even all) might

also fail.

 Priority Inversion. Tasks might not

execute with the proper priority even

though it was set. Deadlines might be

missed.

6

Critical Sections +

Multiprocessors

 Reduced Parallelism. Several tasks

with overlapping critical sections will

cause waiting processors to go idle.

Task 1:

Task 2:

Task 3:

Task 4:

7

Avoid Critical Sections!

 Avoid Blocking. Easier and more optimistic analysis,
i.e. less hardware needed.

 Avoid Deadlocks. Increased fault-tolerance as failed
tasks can not affect others to fail.

 Avoid Priority Inversion. Easier and more reliable
analysis, and avoids complex and high-overhead
solutions.

 Increased Parallelism. Increased overall performance,
more optimistic analysis, i.e. less hardware needed.

8

Non-Blocking

Synchronization

 The key lies in how mutual exclusion (i.e.

mutex, semaphore) is implemented in

actual hardware (i.e. processors).

 Atomic primitives in hardware can atomically

update one memory word.

 Sophisticated solutions can exploit the

same atomic primitives to support

access to shared resources without

locks, i.e. non-blocking.

9

Non-Blocking Algorithms

 Obstruction-Free.
 Guarantees progress in absence of contention.

 Need extra module for contention management.

 Lock-Free.
 Guarantees that always one operation is making

progress.

 Combined with scheduling information, schedulability
analysis can be done.

 Wait-Free.
 Guarantees that any operation will finish in a finite time.

 Schedulability analysis can be done directly.

Task Parallelism Library

 Fine-grained parallelism is desired for achieving

maximal speed-up.

 Spawning threads is expensive.

 Task-based approach:

 Dynamically (recursively) spawn tasks.

 Each Task contains a relatively small work-load.

• Usually just a function call.

• Side-effects are (usually) allowed.

 A Task Parallelism Library is usually a multi-

threaded program (run-time system) together

with a programming framework.
10

Fibonacci Example (Wool)

11

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "wool.h"
4

5 TASK_1 (int , fib, int , n)
6 {
7 if(n<2) return n;
8 else {
9 int a,b;
10 SPAWN (fib, n -2);
11 a = CALL (fib, n -1);
12 b = SYNC (fib);
13 return a+b;
14 }
15 }
16

17 TASK_2 (int , main, int , argc,
18 char **, argv)
19 {
20 printf("%d \n", CALL (fib, atoi(argv[1])));
21 }

Light-Weight Task

Management Libraries

 If considering a large number of tasks,

handling costs becomes a bottleneck for

efficiency (e.g. speed-up).

 Core issues:

 Data structure in which the tasks are stored.

 Strategy for load balancing between workers

(i.e. threads)

 Synchronization for moving tasks between

workers and corresponding data structures

in order to realize load balancing strategy.

12

Work-Stealing ”Deques”

 Task objects stored in a “deque” (local

Push/Pop, thieves Pop) data structure.

 Allowing side-effects:

 Arora et al. “Thread scheduling for multiprogrammed

multiprocessors”. 1998.

 …

 Chase and Lev. “Dynamic circular work-stealing

deque”. 2005.

 Disallowing side-effects:

 Michael et al. ”Idempotent work stealing”. 2009.13

T T T T T T T
Push

Pop

Pop
Pop

Pop

The Wool Library (v.0.1.1)

 Karl-Filip Faxén, ”Wool – A work

stealing library”, MCC 2008.

 Really light-weight.

 Simplified framework.

 Efficient synchronization

 Tasks and ”deque” data structure is

the same (”collapsed layers”).

 Un-even synchronization

• Optimizes for the average case.
14

Wool: Architecture

 Each worker has a large array of Tasks.

 Each Task includes stealing/availability

status.

15

T T T T T T T

Push / Pop

Pop

T T T

SS S S SS S S SS

Pop
Pop

…
L Lock

Modified Task data structure

 Thieves synchronize through lock.

 Thief and owner synchronize through
both f and balarm.

16

f

Thief

Owner Owner

balarm

Thief

Wool: Stealers

17

1 bool steal(Worker *victim)
2 {
3 lock(victim->lck);
4 Task *t = victim->bot;
5 t->balarm = STOLEN;
6 memory_barrier();
7 if(t->f == INLINED) {
8 unlock(victim->lck);
9 t->balarm = READY;
10 return false;
11 } else {
12 victim->bot++;
13 unlock(victim->lck)
14 ... // Run the task
15 memory_barrier();
16 t->balarm = DONE;
17 return true;
18 }
19 }

Wool: Task owners

18

21 void sync(Task *t)
22 {
23 t->f = INLINED;
24 memory_barrier();
25 if(t->balarm != READY) {
26 // Wait for thief to fully decide
27 lock(self->lck);
28 if(t->balarm == READY) {
29 unlock(self->lck);
30 ... // Run the task
31 } else {
32 unlock(self->lck);
33 ... // Wait for thief to finish
34 self->bot--;
35 }
36 }
37 }

Lock-Free Approach:

Atomic Primitives

19

1 void FAA(int volatile *address, int number) atomically do {
2 *address = *address + number;
3 }
4 //
5 bool CAS(int volatile *address, int oldvalue, int newvalue) atomically do {
6 if(*address == oldvalue) {
7 *address = newvalue;
8 return true;
9 }
10 else return false;
11 }
12 //
13 bool DWCAS(int volatile *address, int oldvalue1, int oldvalue2, int
newvalue1, int newvalue2) atomically do {
14 if(address[0] == oldvalue1 && address[1] == oldvalue2) {
15 address[0] = newvalue1;
16 address[1] = newvalue2;
17 return true;
18 }
19 else return false;
20 }

Modified Task data structure

 Place both f and balarm into same

double-word.

20

f

Thieves

Owner Owner

balarm

Lock-Free Wool

21

1 bool steal(Worker *victim)
2 {
3 Task *t = victim->bot;
4 f = t->f;
5 if(f != INLINED && DWCAS(&t->f, f, READY, f, STOLEN)) {
6 FAA(&victim->bot, 1);
7 ... // Run the task
8 memory_barrier();
9 t->balarm = DONE;
10 return true;
11 }
12 else return false;
13 }
14

15 void sync(Task *t)
16 {
17 t->f = INLINED;
18 memory_barrier();
19 if(t->balarm == READY) {
20 ... // Run the task
21 }
22 else {
23 ... // Wait for thief to finish
24 FAA(&self->bot, -1);
25 }
26 }

Experiments (Intel core i7):
Fibonacci, fully expanded spawn-tree

22

Experiments:
Quicksort using shared memory

23

Experiments:
Matrix multiplication using ”parallel for”

24

Conclusions

 Although Wool was highly optimized, adding

Lock-Free synchronization could improve

(absolute) performance.

 ”Un-even” synchronization is an interesting

technique for optimizing the average case.

 Task ”size” is significant for performance.

 ”parallel for” is especially sensitive for task size, due

to relatively high overhead.

25

26

Questions?

Thank You for listening!

www.pss-ab.com

www.adm.hb.se/~hsu

www.cse.chalmers.se/~tsigas

http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.pss-ab.com/
http://www.adm.hb.se/~hsu
http://www.cse.chalmers.se/~tsigas

