Efficient Work Stealing for Fine-Grained
Parallelism

Karl-Filip Faxén
Swedish Institute of Computer Science

November 26, 2009

Task parallel fib in Wool

TASK_1(int, fib, int, n)
{
if(n<2) {
return n;
} else {
int a,b;
SPAWN(fib, n-2);
a = CALL(fib, n-1);
b = SYNC(fib);
return a+b;

Two kinds of fine-grainedness

Task granularity How often are tasks spawned?
Gr = Ts/Nt

Load balancing granularity How often must load
balancing (migration, stealing) be done?

GL= Ts/Ny

» T is serial run-time with no parallelism
overhead

» N7 is number of tasks spawned

» Ny is number of migrations (steals in a work
stealing implementation)

The stress program

c ¢ Cc c c Cc C C

» Repeat r times (figure shows one repetition):

» spawn a tree of depth d of tasks (d = 3 in figure);

> the leaves do empty loop C for n iterations (2n cycles)

Fine-grain tasks and fine-grain load balancing

8 - 8 -

7 7

6 6

5 5

4 4

3 3

2 2

123456738 123456738
fib(42) stress 4096 (3, 128K)

Wool Cilk TBB——— OpenMP——

Basic structures

» The tasks are scheduled on top of worker threads, one per
core

» Each worker has a worker descriptor containing

» A task pool with ready tasks for other workers to steal
» A lock protecting the task pool

» Each task is represented by a task descriptor with

» A pointer to the code to run
Arguments for the code

Space for return value

A pointer to the thief, if stolen

v

v

v

Designing for fast inlinined tasks

The taskpool

» is a stack managed by a top pointer in task
descriptor

» push on SPAWN
» pop on SYNC

while thieves use a bot pointer, also in task
descriptor,
» contains task descriptors, not pointers

» simple memory management

Most of the design follows from this.

Optimizing inlined tasks: Synchronize on task

» SYNC (join) needs to synchronize with thiefs, so takes
lock in the baseline

» Avoid taking lock on every SYNC

» Writes to worker descriptor (makes subsequent thief
accesses miss)
» Slow operation

» Synchronize thief and victim with atomic swap on flag in
task descriptor

» Thiefs still take lock in worker descriptor

Optimizing inlined tasks: Task specific join

» Generate specialized SYNC for each task (rather than
generic SYNC in RTS)
» Knows which task to call when inling, so can use a
direct call, not via pointer in task descriptor
» Knows type of return value, so can pass that in standard
way rather than updating via pointer

» When inlining, this optimization replaces three calls

» Application to SYNC (an RTS function)
» RTS to wrapper function (indirect call)
» Wrapper function to task function

with two
» Application to specialized SYNC (inlinable, defined in

header)
» Specialized SYNC to task (within the same file)

Optimizing inlined tasks: Private tasks

» Avoid atomic swap on each SYNC by making some tasks
private

» A private task can not be stolen, so no synchronization
is needed

» Private tasks can become public (the task descriptor is
still built) at the discretion of the owner

» Owner must check for the need for more public tasks

» Thiefs notify owner when only n public tasks remain

Results for inlining optimizations

| Version | Time (s) | Overhead (cyc) |
Base 18.9 7
Synchronize on task 7.8 29
Task specific join 5.9 19
Private tasks (no private) 6.0 19
Private tasks (all private) 3.0 3
Seq 2.4 0

» Measured by timing parallel version of £ib(42) on a
single processor.

» Overhead calculated as (T; — Ts)/Nr, that is: time
difference divided by number of SPAWNs

» Measures the marginal overhead over procedure call

Optimizing steals: peek

» Before trying to lock a victim, check if it has
work

» |f victim has no work, thief does no write

» Several thiefs can cache the relevant info in a worker in
a cache coherent machine

» Hence spin locally

» Important when work is hard to find (low parallelism)

» When a worker spawns, the write notifies the thieves by
means of the coherence protocol

Optimizing steals: trylock

» When a thief finds a victim with work, it uses
pthread mutex_trylock rather than
pthread mutex_lock

» If lock is not free, try another victim

» Contention is expensive
» Other workers might also have work

Optimizing steals: nolock

» Get rid of the lock on the worker descripor altogether

» We have mutual exclusion between thieves and owner by
the atomic swap on the task descriptor

» This almost gives mutex on worker descriptor (bot) since

» only the task that bot points to can be stolen
» bot is only updated upon successful steal

Optimizing steals: nolock

» However, long delay is possible between read of bot and
atomic swap (scheduling, interrupts,...)

Thief 1 and 2 both read bot = 3

Thief 1 steals task 3, then finishes it
Owner joins with task 3, then with 2 and 1
Owner spawns several tasks

Thief 2 steals task 3

v

v

v

v

v

Now tasks are stolen out of order; if thief 2 updates bot,
tasks 1 and 2 becomes invisible until joined with

» Solution: Only update bot when it still points at the
stolen task

Optimizing steals: stress tests

RFNWRAROION 0

123456781234567812345678
(8, 65536) (9, 32768) (10, 16384)

RFNWPRAOCOION 0

123456781234567812345678
(11, 8192) (12, 4096) (13, 2048)

Base —— + peek —— + trylock —— 4+ nolock ——

Comparing Wool with Cilk4++, TBB, and OpenMP

’ System \ Inlined \ 2 \ 4 \ 8 ‘
Wool 3-19 | 2200| 5600 | 10400
Cilk++ 134 | 31 050 | 73 600 | 110 400
TBB 323 | 5800 | 14 000 | 30 000
OpenMP 878 | 4830 | 9200 | 20240

» Column labeled Inlined gives cost of inlined tasks
computed using £ib

» Columns labelled 2,4 and 8 give per repetition overhead
of stress for

» a tree of depth 1,2 and 3 on 2, 4 and 8 processors
(respectively), over

» a tree of depth 0 on one processor (with same number n
of leaf loop iterations)

More measurements: Cholesky

-

12345678123456781234567812345678
(500, 2K, 1024) (1000, 4K, 256) (2000, 8K, 64) (4000, 16K, 16)

cholesky (rows, nonzeros, repetitions)

Wool Cilk —— TBB——— OpenMP ——

More measurements: Matrix multiply

12345678123456781234567812345678
(64, 16384) (128, 2048) (256, 256) (512, 32)

mm (rows, repetitions)

Wool Cilk —— TBB——— OpenMP ——

More measurements: Sub String Finder

123456781234567812345678123456738
(12, 16384) (13, 8192) (14, 4096) (15, 2048)

ssf (fibs, repetitions)

Wool

Cilk —— TBB——— OpenMP ——

