
Efficient Work Stealing for Fine-Grained

Parallelism

Karl-Filip Faxén

Swedish Institute of Computer Science

November 26, 2009

Task parallel fib in Wool

TASK 1(int, fib, int, n)

{

if(n<2) {

return n;

} else {

int a,b;

SPAWN(fib, n-2);

a = CALL(fib, n-1);

b = SYNC(fib);

return a+b;

}

}

Two kinds of fine-grainedness

Task granularity How often are tasks spawned?
GT = TS/NT

Load balancing granularity How often must load
balancing (migration, stealing) be done?
GL = TS/NM

I TS is serial run-time with no parallelism
overhead

I NT is number of tasks spawned

I NM is number of migrations (steals in a work
stealing implementation)

The stress program

C C C C C C C C

I Repeat r times (figure shows one repetition):

I spawn a tree of depth d of tasks (d = 3 in figure);

I the leaves do empty loop C for n iterations (2n cycles)

Fine-grain tasks and fine-grain load balancing

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

fib(42)
1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

stress 4096 (3, 128K)

Wool Cilk TBB OpenMP

Basic structures

I The tasks are scheduled on top of worker threads, one per
core

I Each worker has a worker descriptor containing

I A task pool with ready tasks for other workers to steal
I A lock protecting the task pool

I Each task is represented by a task descriptor with

I A pointer to the code to run
I Arguments for the code
I Space for return value
I A pointer to the thief, if stolen

Designing for fast inlinined tasks

The taskpool

I is a stack managed by a top pointer in task
descriptor

I push on SPAWN
I pop on SYNC

while thieves use a bot pointer, also in task
descriptor,

I contains task descriptors, not pointers
I simple memory management

Most of the design follows from this.

Optimizing inlined tasks: Synchronize on task

I SYNC (join) needs to synchronize with thiefs, so takes
lock in the baseline

I Avoid taking lock on every SYNC

I Writes to worker descriptor (makes subsequent thief
accesses miss)

I Slow operation

I Synchronize thief and victim with atomic swap on flag in
task descriptor

I Thiefs still take lock in worker descriptor

Optimizing inlined tasks: Task specific join

I Generate specialized SYNC for each task (rather than
generic SYNC in RTS)

I Knows which task to call when inling, so can use a
direct call, not via pointer in task descriptor

I Knows type of return value, so can pass that in standard
way rather than updating via pointer

I When inlining, this optimization replaces three calls

I Application to SYNC (an RTS function)
I RTS to wrapper function (indirect call)
I Wrapper function to task function

with two

I Application to specialized SYNC (inlinable, defined in
header)

I Specialized SYNC to task (within the same file)

Optimizing inlined tasks: Private tasks

I Avoid atomic swap on each SYNC by making some tasks
private

I A private task can not be stolen, so no synchronization
is needed

I Private tasks can become public (the task descriptor is
still built) at the discretion of the owner

I Owner must check for the need for more public tasks
I Thiefs notify owner when only n public tasks remain

Results for inlining optimizations

Version Time (s) Overhead (cyc)

Base 18.9 77
Synchronize on task 7.8 29
Task specific join 5.9 19

Private tasks (no private) 6.0 19
Private tasks (all private) 3.0 3

Seq 2.4 0

I Measured by timing parallel version of fib(42) on a
single processor.

I Overhead calculated as (T1 − TS)/NT , that is: time
difference divided by number of SPAWNs

I Measures the marginal overhead over procedure call

Optimizing steals: peek

I Before trying to lock a victim, check if it has
work

I If victim has no work, thief does no write
I Several thiefs can cache the relevant info in a worker in

a cache coherent machine
I Hence spin locally
I Important when work is hard to find (low parallelism)
I When a worker spawns, the write notifies the thieves by

means of the coherence protocol

Optimizing steals: trylock

I When a thief finds a victim with work, it uses
pthread mutex trylock rather than
pthread mutex lock

I If lock is not free, try another victim

I Contention is expensive
I Other workers might also have work

Optimizing steals: nolock

I Get rid of the lock on the worker descripor altogether

I We have mutual exclusion between thieves and owner by
the atomic swap on the task descriptor

I This almost gives mutex on worker descriptor (bot) since

I only the task that bot points to can be stolen
I bot is only updated upon successful steal

Optimizing steals: nolock

I However, long delay is possible between read of bot and
atomic swap (scheduling, interrupts,...)

I Thief 1 and 2 both read bot = 3
I Thief 1 steals task 3, then finishes it
I Owner joins with task 3, then with 2 and 1
I Owner spawns several tasks
I Thief 2 steals task 3

Now tasks are stolen out of order; if thief 2 updates bot,
tasks 1 and 2 becomes invisible until joined with

I Solution: Only update bot when it still points at the
stolen task

Optimizing steals: stress tests

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
(8, 65536)

1 2 3 4 5 6 7 8
(9, 32768)

1 2 3 4 5 6 7 8
(10, 16384)

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
(11, 8192)

1 2 3 4 5 6 7 8
(12, 4096)

1 2 3 4 5 6 7 8
(13, 2048)

Base + peek + trylock + nolock

Comparing Wool with Cilk++, TBB, and OpenMP

System Inlined 2 4 8

Wool 3–19 2 200 5 600 10 400
Cilk++ 134 31 050 73 600 110 400
TBB 323 5 800 14 000 30 000
OpenMP 878 4 830 9 200 20 240

I Column labeled Inlined gives cost of inlined tasks
computed using fib

I Columns labelled 2,4 and 8 give per repetition overhead
of stress for

I a tree of depth 1,2 and 3 on 2, 4 and 8 processors
(respectively), over

I a tree of depth 0 on one processor (with same number n
of leaf loop iterations)

More measurements: Cholesky

1 2 3 4 5 6 7 8
(500, 2K, 1024)

1 2 3 4 5 6 7 8
(1000, 4K, 256)

1 2 3 4 5 6 7 8
(2000, 8K, 64)

1 2 3 4 5 6 7 8
(4000, 16K, 16)

1
2
3
4
5
6
7
8

cholesky (rows, nonzeros, repetitions)

Wool Cilk TBB OpenMP

More measurements: Matrix multiply

1 2 3 4 5 6 7 8
(64, 16384)

1 2 3 4 5 6 7 8
(128, 2048)

1 2 3 4 5 6 7 8
(256, 256)

1 2 3 4 5 6 7 8
(512, 32)

1
2
3
4
5
6
7
8

mm (rows, repetitions)

Wool Cilk TBB OpenMP

More measurements: Sub String Finder

1 2 3 4 5 6 7 8
(12, 16384)

1 2 3 4 5 6 7 8
(13, 8192)

1 2 3 4 5 6 7 8
(14, 4096)

1 2 3 4 5 6 7 8
(15, 2048)

1
2
3
4
5
6
7
8

ssf (fibs, repetitions)

Wool Cilk TBB OpenMP

