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Introduction to CP

*¥ Similar to Integer Programming, but more natural
modeling

% Constraint programming is declarative, useful for
automatic parallelism

% Can be used to formulate problems such as Sudoku,
Jobshop scheduling, and aircrew scheduling

% Solving is NP-complete




Solving a CP-Problem

% Constraint problem solving = Search + Consistency
% Search is usually depth-first

* Consistency prunes values that cannot lead to a
solution (pruning not complete, hence search)

% Solving is search tree exploration with very heavy
nodes
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Questions?

Or are the basics of CP clear
to everyone?
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Parallelism in CP

% Data parallelism: Split the search tree

% Task parallelism: Split the work in the search nodes




Problems with Data Parallelism

* Problems can’t always be split efficiently -
eventually the work is too small

% Communication costs

* Does not suit all problems, e.g., scheduling need
customized splitting method

% Consistency often magnitudes more time-
consuming than search




Solution

* Combine data and task parallelism
* When splitting is inefficient, use task parallelism
* \When tasks are too small, split tree instead

* First we need task parallelism, hence this work




Our Model of Parallel Consistency
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% The solver has several consistency threads (running
on processors P1, P2, and P3 in the example)

* Each iteration of consistency takes data from the
store held by the solver
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Variants

% Shared updates: the changes to variables are visible
to the other constraints before the barrier

% Thread local updates: the changes are only visible
after the barrier

* Thread local updates needs no extra synchronization,
but slower to detect inconsistency
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Shared Updates

Thread 1 Thread 2 Thread 3
Constraint
Queue
\ / Done, waiting
¢ Done, waiting
T Perform updates Barrier

Add changed constraints to queue

% Changes to variables are visible to other threads
between constraints

* Updates are written to the store after the barrier
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Experimental Results

* n-Sudoku, n = 1024

* LA31, 30 by 10 jobshop

* n-Queens, n =40 000

* JaCoP solver, written in Java 5
* Mac Pro with 8 cores

* Speed-up before search
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Consistent Store
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Observations

* Sudoku is a perfect problem, performs no pruning
* LA31 - global constraints are too small

% Queens - three alldiff constraints dominates
execution
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Inconsistent Store
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Observations

* Many more iterations of consistency, also for
Sudoku

* Speed-up drops compared to consistent store
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* Sudoku perfect, LA31 twelve

iterations of consistency,
Queens two iterations

Processor Load
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Conclusions

% Some problems do not scale well, they need
parallel consistency algorithms

* Very hard to retain speed-up during search (due to
locking and wait/notify)

* Small difference between thread local updates and
shared updates

* |s probably best as an extension to data
parallelism
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Future Work

* Combine data and task parallelism
* Load balancing in task parallelism

* |deally: share updates during execution of
consistency algorithms

* Long-term future of parallelism in CP: data parallelism
+ task parallelism + parallel consistency algorithms
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Thank You

Questions?




