Parallel Consistency in
Constraint Programming

Carl Christian Rolf &
Krzysztof Kuchcinski

Lund University
ccr@cs.lth.se

mailto:ccr@cs.lth.se
mailto:ccr@cs.lth.se

Outline

* Introduction to Constraint Programming (CP)
* Parallelism in CP

% Our Model of Parallel Consistency

* Experimental Results

% Conclusions

% Future Work

Introduction to CP

*¥ Similar to Integer Programming, but more natural
modeling

% Constraint programming is declarative, useful for
automatic parallelism

% Can be used to formulate problems such as Sudoku,
Jobshop scheduling, and aircrew scheduling

% Solving is NP-complete

Solving a CP-Problem

% Constraint problem solving = Search + Consistency
% Search is usually depth-first

* Consistency prunes values that cannot lead to a
solution (pruning not complete, hence search)

% Solving is search tree exploration with very heavy
nodes

X € {0..3,5..9}
Y € {0..9}
X <Y

Consistency Consistency

X € {0..3,5..9}
Y e {1.9}

X <Y

Questions?

Or are the basics of CP clear
to everyone?

© briginalAniéf
Reproduction rights obtainable from
www. CartoonStock.com

Parallelism in CP

% Data parallelism: Split the search tree

% Task parallelism: Split the work in the search nodes

Problems with Data Parallelism

* Problems can’t always be split efficiently -
eventually the work is too small

% Communication costs

* Does not suit all problems, e.g., scheduling need
customized splitting method

% Consistency often magnitudes more time-
consuming than search

Solution

* Combine data and task parallelism
* When splitting is inefficient, use task parallelism
* \When tasks are too small, split tree instead

* First we need task parallelism, hence this work

Our Model of Parallel Consistency

P1 P2 P3

CP NIPENIP
effcllollc

O OO
% The solver has several consistency threads (running
on processors P1, P2, and P3 in the example)

* Each iteration of consistency takes data from the
store held by the solver

10

Variants

% Shared updates: the changes to variables are visible
to the other constraints before the barrier

% Thread local updates: the changes are only visible
after the barrier

* Thread local updates needs no extra synchronization,
but slower to detect inconsistency

11

Shared Updates

Thread 1 Thread 2 Thread 3
Constraint
Queue
\ / Done, waiting
¢ Done, waiting
T Perform updates Barrier

Add changed constraints to queue

% Changes to variables are visible to other threads
between constraints

* Updates are written to the store after the barrier

12

Experimental Results

* n-Sudoku, n = 1024

* LA31, 30 by 10 jobshop

* n-Queens, n =40 000

* JaCoP solver, written in Java 5
* Mac Pro with 8 cores

* Speed-up before search

13

Consistent Store

Sudoku H [A31 B Queens

N W B~ O1 O

Absolute Speed-up

1 2 4 8
Number of Threads

14

Observations

* Sudoku is a perfect problem, performs no pruning
* LA31 - global constraints are too small

% Queens - three alldiff constraints dominates
execution

S

Inconsistent Store

Absolute Speed-up

| Sudoku

H [A31 B Queens

2 4
Number of Threads

16

Observations

* Many more iterations of consistency, also for
Sudoku

* Speed-up drops compared to consistent store

1

Active Threads
i L

N
T

Execution Progress

* Sudoku perfect, LA31 twelve

iterations of consistency,
Queens two iterations

Processor Load

18

Active Threads
N

Active Threads
AN

\®]

8%

(9))
T

N
T

o
T

l | \ﬁl |

Execution Progress

Execution Progress

Conclusions

% Some problems do not scale well, they need
parallel consistency algorithms

* Very hard to retain speed-up during search (due to
locking and wait/notify)

* Small difference between thread local updates and
shared updates

* |s probably best as an extension to data
parallelism

19

Future Work

* Combine data and task parallelism
* Load balancing in task parallelism

* |deally: share updates during execution of
consistency algorithms

* Long-term future of parallelism in CP: data parallelism
+ task parallelism + parallel consistency algorithms

20

Thank You

Questions?

