
Parallel Consistency in
Constraint Programming

Carl Christian Rolf &
Krzysztof Kuchcinski

Lund University
ccr@cs.lth.se

mailto:ccr@cs.lth.se
mailto:ccr@cs.lth.se

Outline

Introduction to Constraint Programming (CP)

Parallelism in CP

Our Model of Parallel Consistency

Experimental Results

Conclusions

Future Work

2

Introduction to CP

Similar to Integer Programming, but more natural
modeling

Constraint programming is declarative, useful for
automatic parallelism

Can be used to formulate problems such as Sudoku,
Jobshop scheduling, and aircrew scheduling

Solving is NP-complete

3

Solving a CP-Problem

Constraint problem solving = Search + Consistency

Search is usually depth-first

Consistency prunes values that cannot lead to a
solution (pruning not complete, hence search)

Solving is search tree exploration with very heavy
nodes

4

Example of CP-Solving

X ∈ {4}
Y ∈ {0..9}

X < Y

X = 4

X ∈ {0..3, 5..9}
Y ∈ {0..9}

X < Y

X ≠ 4

X ∈ {4}
Y ∈ {5..9}

X < Y

X ∈ {0..3, 5..9}
Y ∈ {1..9}

X < Y

Consistency Consistency

X ∈ {0..9}
Y ∈ {0..9}

X < Y

5

One branch evaluated at a time
Consistency enforced on every level of the search tree

Questions?
Or are the basics of CP clear
to everyone?

Parallelism in CP

Data parallelism: Split the search tree

Task parallelism: Split the work in the search nodes

7

Problems with Data Parallelism

Problems can’t always be split efficiently -
eventually the work is too small

Communication costs

Does not suit all problems, e.g., scheduling need
customized splitting method

Consistency often magnitudes more time-
consuming than search

8

Solution

Combine data and task parallelism

When splitting is inefficient, use task parallelism

When tasks are too small, split tree instead

First we need task parallelism, hence this work

9

Our Model of Parallel Consistency

The solver has several consistency threads (running
on processors P1, P2, and P3 in the example)

Each iteration of consistency takes data from the
store held by the solver

X ! {0..9}

Y ! {0..9}

C2C1

P1

C2C1

C3

C3

P2 P3

10

Variants

Shared updates: the changes to variables are visible
to the other constraints before the barrier

Thread local updates: the changes are only visible
after the barrier

Thread local updates needs no extra synchronization,
but slower to detect inconsistency

11

Shared Updates

Changes to variables are visible to other threads
between constraints

Updates are written to the store after the barrier

Constraint

Queue

Thread 1 Thread 2 Thread 3

Barrier

Done, waiting

Done, waiting

Perform updates

Add changed constraints to queue

12

Experimental Results

n-Sudoku, n = 1024

LA31, 30 by 10 jobshop

n-Queens, n = 40 000

JaCoP solver, written in Java 5

Mac Pro with 8 cores

Speed-up before search

13

Consistent Store

14

Observations

Sudoku is a perfect problem, performs no pruning

LA31 - global constraints are too small

Queens - three alldiff constraints dominates
execution

15

Inconsistent Store

16

Observations

Many more iterations of consistency, also for
Sudoku

Speed-up drops compared to consistent store

17

Processor Load

Sudoku perfect, LA31 twelve
iterations of consistency,
Queens two iterations

0

2

4

6

8

A
ct

iv
e
 T

h
re

a
d
s

Execution Progress

0

2

4

6

8

A
ct

iv
e

 T
h

re
a

d
s

Execution Progress

0

2

4

6

8

A
ct

iv
e

 T
h

re
a

d
s

Execution Progress

18

Conclusions

Some problems do not scale well, they need
parallel consistency algorithms

Very hard to retain speed-up during search (due to
locking and wait/notify)

Small difference between thread local updates and
shared updates

Is probably best as an extension to data
parallelism

19

Future Work

Combine data and task parallelism

Load balancing in task parallelism

Ideally: share updates during execution of
consistency algorithms

Long-term future of parallelism in CP: data parallelism
+ task parallelism + parallel consistency algorithms

20

Thank You
Questions?

