
Uppsala Programming for
Multicore Architectures
Research Center

David	 Black-‐Schaffer	
Assistant	 Professor,	 Department	 of	 Informa<on	 Technology	

Uppsala	 University	

Understanding	 Applica0on	 Sensi0vi0es:	
The	 Key	 to	 Shared	 Resource	 Modeling	

Special	 thanks	 to	 the	 Uppsala	 Architecture	 Research	 Team:	
David	 Eklöv,	 Prof.	 Erik	 Hagersten,	 Nikos	 Nikoleris,	 Andreas	 Sandberg,	 Andreas	 Sembrant	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 2	 David	 Black-‐Schaffer	

Mul<core	 Memory	 Systems	
Intel	 Nehalem	 Memory	 Hierarchy	 (3GHz)	

D.	 Molka,	 et.	 al.,	 Memory	 Performance	 and	 Cache	 Coherency	 Effects	 on	 an	 Intel	 Nehalem	 Mul8processor	 System,	 PACT	 2009.	

10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 Latency	
(cycles)	

190	

DRAM	
	

L3	 L2	 L1	

Core	

Core	

Core	

Core	

Latency	 to	 DRAM:	
200	 cycles	

Latency	 to	 private	 L1:	
4	 cycles	

Bandwidth	 to	 DRAM:	
4-‐8	 bytes/cycle	 total	

1-‐2	 bytes/cycle	 per	 core	
Bandwidth	 to	 Private	 L1:	
15	 bytes/cycle	 per	 core	

Shared	
off-‐chip	 Bandwidth	

Shared	
Last	 Level	 Cache	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 3	 David	 Black-‐Schaffer	

Impact	 of	 Resource	 Sharing	

0	

0.5	

1	

1.5	

2	

bzip2	 lbm	 libquantum	 gamess	 Overall	

Th
ro
ug
hp

ut
	

Alone	 Mixed	 Workload	

30-‐40%	 slowdown	
due	 to	 sharing	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 4	 David	 Black-‐Schaffer	

Measuring	 Shared	 Resource	 Sensi<vity	

1.   Cache	 Pirate	
– Measuring	 sensi<vity	 to	 shared	 cache	 alloca<on	

–  General	 technique	 for	 measuring	 sensi<vity	 in	 real	 HW/SW	

2.   Bandwidth	 Bandit	
– Measuring	 sensi<vity	 to	 shared	 bandwidth	 alloca<on	

3.   Modeling	 Cache	 Usage	
–  Predic<ng	 shared	 cache	 alloca<on	 and	 performance	 impact	

–  Use	 Cache	 Pirate	 data	 to	 include	 HW/SW	 complexi<es	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 5	 David	 Black-‐Schaffer	

Overview

$1

$1

- 3 -

Overview

$2

$2

- 3 -

Overview

$3

$3

- 3 -

Overview

$4

$4

- 3 -

Shared	 Cache	

Overview

Captures performance data for all cache sizes in one run.

Cache Size 8MB

Tim
e

Target

Pirate

0MB

Average Target slowdown: 5%
(Simulation slowdown: 100⇥ – 1000⇥)

- 4 -

1.	 Cache	 Pira0ng	 (David	 Eklöv)	

•  Measure	 cache	 sensi<vity	 by	 stealing	 cache	
–  Steal	 cache	 with	 a	 “Pirate”	 applica<on	
–  Measure	 performance	 of	 the	 Target	
–  Monitor	 the	 Pirate	 to	 verify	 cache	 stolen	

5%	 Overhead	
Accurate:	 Includes	 all	 HW/SW	 effects	

If	 the	 Pirate	 misses	 in	 the	
cache	 then	 we	 aren’t	
stealing	 what	 we	 want.	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 6	 David	 Black-‐Schaffer	

Cache Pirating
F/

M
R

at
io

482.sphinx3

B
W

C
P

I

cache size

Miss Ratio
Fetch Ratio

0%

2%

4%

0.0

1.0

2.0

0.0

0.5

1.0

1M 3M 5M 7M

F/
M

R
at

io

470.lbm

B
W

C
P

I

cache size

0%

3%

6%

0.0

1.0

2.0

3.0

0.0

0.8

1.6

1M 3M 5M 7M

Applica<on	 Cache	 Sensi<vi<es	 Cache Pirating
F/

M
R

at
io

482.sphinx3

B
W

C
P

I

cache size

Miss Ratio
Fetch Ratio

0%

2%

4%

0.0

1.0

2.0

0.0

0.5

1.0

1M 3M 5M 7M

F/
M

R
at

io

470.lbm

B
W

C
P

I

cache size

0%

3%

6%

0.0

1.0

2.0

3.0

0.0

0.8

1.6

1M 3M 5M 7M

Performance	 maintained	 by	
increasing	 bandwidth	 usage.	

Effect	 of	 hardware	 prefetching.	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 7	 David	 Black-‐Schaffer	

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp
expected

- 5 -

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp
expected

measured

- 5 -

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp

�

expected
measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

�

- 5 -

Predic<ng	 Mul<core	 Scaling	 (Cache)	

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp
expected

measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

- 5 -

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp

�

expected
measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

�

- 5 -

Shared	 L3	 Cache	

Performance	 as	 a	 func0on	
of	 shared	 cache	 size	

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp
expected

measured
cache pirate

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

- 5 -

predicted

Profile	 performance	 as	 a	 func0on	 of	 shared	 cache	
	 Predict	 mul0core	 scalability	

Experiment	
•  Run	 1-‐4	 independent	 instances	 of	 the	

same	 program	 on	 a	 4-‐core	 Nehalem	

•  Performance	 affected	 by	 shared	 cache	
–  ¼	 of	 the	 shared	 cache	 	 20%	 slower	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 8	 David	 Black-‐Schaffer	

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

measured

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1M 2M 3M 4M 5M 6M 7M

B
an

dw
id

ht
(G

B
/s

)

cache size

470.lbm

0
2
4
6
8

10
12
14
16

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

470.lbm
required

- 6 -

Bandwidth	 as	 a	 func0on	
of	 shared	 cache	 size	

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

- 6 -

predicted

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

- 6 -

Performance	 as	 a	 func0on	
of	 shared	 cache	 size	

Bandwidth	 Limits	

Q
ue

ue
	

Memory	 Controller	 I/O	

50%	 reduc<on	 in	 cache	 	
57%	 increase	 in	 bandwidth	

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

measured

- 6 -

predicted

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4
Th

ro
ug

hp
ut

cores

470.lbm
cache pirate

measured

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1M 2M 3M 4M 5M 6M 7M

B
an

dw
id

ht
(G

B
/s

)

cache size

470.lbm

0
2
4
6
8

10
12
14
16

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

470.lbm

10.4 GB/s

required
measured

- 6 -

No	 performance	 loss	 with	
less	 cache	 space…	 	

…un<l	 you	 run	 out	 of	
shared	 bandwidth.	

4	 cores	 @	 3GB/s	 =	 12GB/s	
System	 max	 =	 10.4GB/s	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 9	 David	 Black-‐Schaffer	

2.	 Bandwidth	 Bandit	 (David	 Eklöv)	

•  Measure	 bandwidth	 sensi<vity	 by	 stealing	 bandwidth	
•  More	 complex	 than	 Cache	 Pira<ng	

– Memory	 controller	
(access	 pakerns,	 row	 buffers,	 re-‐ordering,	 page	 alloca<on)	

–  Latency	 and	 throughput	 sensi<vi<es	

Bandit’s bandwidth beyond 4.6GB/s, milc’s bandwidth
drops by the same amount, and it starts to follow the
45� dashed line, which represents the points where the
total bandwidth equals the saturation bandwidth.

At this point, we can make the following two obser-
vations. First, the bandwidth saturates well below the
system peak bandwidth of 10.7GB/s. Second, the per-
formance of milc starts to drop long before the satura-
tion bandwidth is reached. This demonstrates that we
cannot assume that co-running applications will not be
impacted by bandwidth contention as long as the total
bandwidth is below the system peak bandwidth.

6.2 Bandit Access Pattern
To investigate how the applications are impacted by

the Bandit’s access patterns, we re-ran the experiment
described in Section 6 with the Bandit’s locality set to
four and eight. (E.g., accessing four or eight cache lines
from each row before moving on to the next row.) This
causes the Bandit to generate contention that is more
similar to that generated by an application with a se-
quential access pattern. The results for milc and soplex
are shown in Figure 5. The other applications displayed
similar behaviors and are not shown.

The figure shows both the Bandit data collected with
a page locality of one (e.g., random access pattern) and
four. Increasing the locality to eight had a negligible
further impact. The first thing to note is that the sat-
uration bandwidth is greater, e.g. for milc it increased
from 6.4GB/s to 7.3GB/s. This is because the bank
access times for the Bandit are reduced (due to the in-
creased number of page-hits), and the throughput of the
memory banks therefore increases.

Furthermore, if we look at the shape of the Target’s
bandwidth and CPI curves, the curves for a locality
of four appear to be stretched. Indeed, if the data is
presented as a percentage of the saturation bandwidth,
the two curves match almost perfectly, see Figure 6.
This suggest that applications’ relative sensitivity to
contention for bandwidth does not change significantly
with its co-runners’ access patterns. As a result, plot-
ting the bandwidth stolen by the Bandit (the x-axis of
the bandwidth graph) as percentage of the saturation
bandwidth, factors out the impact of the co-runners ac-
cess patterns.

6.3 Bandwidth Graphs
Figure 7 shows Bandwidth Bandit data for the eight

benchmarks. In order to factor out the impact of the
Bandits access pattern, bandwidths are express as a
percentage of the saturation bandwidth. The result-
ing bandwidth graphs (BWGs) present a general, quan-
titative description of the applications’ sensitivities to
bandwidth contention, and allow us to determine how
much an application benefits/su�ers when its available
bandwidth is increased/reduced. In the following sec-

0

5

10

15

20

25

30

35

0 1 2 3

sl
o
w
d
o
w
n

(%
)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

cannealstream.

(a)

0

5

10

15

20

25

30

35

0 0.5 1 1.5

sl
o
w
d
o
w
n

(%
)

baseline IPC

mcf

milc

leslie

soplex

lbm

canneal stream.

(b)

Figure 8: Correlation of slowdown with base-
line bandwidth (a) and IPC (b) when the total
bandwidth is 90% of the saturation bandwidth.

0

10

20

30

40

50

0 1 2 3

sl
o
w
d
o
w
n

(%
)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

cannealstream.

(a)

0

10

20

30

40

50

0 0.5 1 1.5

sl
o
w
d
o
w
n

(%
)

baseline IPC

mcf

milc

leslie

soplex

lbm

canneal stream.

(b)

Figure 9: Correlation of slowdown with baseline
bandwidth (a) and IPC (b) when the total band-
width just reached the saturation bandwidth.

tion, we use these BWGs to investigate the benchmark
applications’ sensitivities to contention for memory band-
width.

7. SENSITIVITY TO CONTENTION
Previous work [7, 23] has highlighted the correlation

between an application’s bandwidth demand and its
sensitivity to contention. To investigate this we plot the
correlation between application slowdown due to mem-
ory contention and baseline bandwidth in Figure 8(a)
and Figure 9(a). The baseline bandwidths are the ap-
plication’s bandwidth demand when run alone on the
machine. Figure 8(a) and Figure 9(a), shows slowdown
due to contention as the baseline IPC relative to the
IPC at the point when the total bandwidth (Target plus
Bandit) reaches 90% and 100% of the saturation band-
width, respectively. This allows us to investigate the
applications’ sensitivities both before and after the to-
tal bandwidth saturates.

The graphs in Figure 8(a) and Figure 9(a) show hardly
any correlation between slowdown and the baseline band-
width. For example, in Figure 8(a), canneal and stream-
cluster have the lowest (but di�erent) baseline band-
widths, but large (and very similar) slowdowns, while
lbm and soplex have virtually the same baseline band-
width, but very di�erent slowdowns. Figure 9(a) shows
a similar lack of contention. Furthermore, Figure 8(b)
shows the correlation between slowdown and the corre-

6

Insight:	 No	 correla0on	
between	 bandwidth	 usage	
and	 sensi0vity	 to	
bandwidth	 conten0on!	

Bandit’s bandwidth beyond 4.6GB/s, milc’s bandwidth
drops by the same amount, and it starts to follow the
45� dashed line, which represents the points where the
total bandwidth equals the saturation bandwidth.

At this point, we can make the following two obser-
vations. First, the bandwidth saturates well below the
system peak bandwidth of 10.7GB/s. Second, the per-
formance of milc starts to drop long before the satura-
tion bandwidth is reached. This demonstrates that we
cannot assume that co-running applications will not be
impacted by bandwidth contention as long as the total
bandwidth is below the system peak bandwidth.

6.2 Bandit Access Pattern
To investigate how the applications are impacted by

the Bandit’s access patterns, we re-ran the experiment
described in Section 6 with the Bandit’s locality set to
four and eight. (E.g., accessing four or eight cache lines
from each row before moving on to the next row.) This
causes the Bandit to generate contention that is more
similar to that generated by an application with a se-
quential access pattern. The results for milc and soplex
are shown in Figure 5. The other applications displayed
similar behaviors and are not shown.

The figure shows both the Bandit data collected with
a page locality of one (e.g., random access pattern) and
four. Increasing the locality to eight had a negligible
further impact. The first thing to note is that the sat-
uration bandwidth is greater, e.g. for milc it increased
from 6.4GB/s to 7.3GB/s. This is because the bank
access times for the Bandit are reduced (due to the in-
creased number of page-hits), and the throughput of the
memory banks therefore increases.

Furthermore, if we look at the shape of the Target’s
bandwidth and CPI curves, the curves for a locality
of four appear to be stretched. Indeed, if the data is
presented as a percentage of the saturation bandwidth,
the two curves match almost perfectly, see Figure 6.
This suggest that applications’ relative sensitivity to
contention for bandwidth does not change significantly
with its co-runners’ access patterns. As a result, plot-
ting the bandwidth stolen by the Bandit (the x-axis of
the bandwidth graph) as percentage of the saturation
bandwidth, factors out the impact of the co-runners ac-
cess patterns.

6.3 Bandwidth Graphs
Figure 7 shows Bandwidth Bandit data for the eight

benchmarks. In order to factor out the impact of the
Bandits access pattern, bandwidths are express as a
percentage of the saturation bandwidth. The result-
ing bandwidth graphs (BWGs) present a general, quan-
titative description of the applications’ sensitivities to
bandwidth contention, and allow us to determine how
much an application benefits/su�ers when its available
bandwidth is increased/reduced. In the following sec-

0

5

10

15

20

25

30

35

0 1 2 3

sl
o
w
d
o
w
n

(%
)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

cannealstream.

(a)

0

5

10

15

20

25

30

35

0 0.5 1 1.5

sl
o
w
d
o
w
n

(%
)

baseline IPC

mcf

milc

leslie

soplex

lbm

canneal stream.

(b)

Figure 8: Correlation of slowdown with base-
line bandwidth (a) and IPC (b) when the total
bandwidth is 90% of the saturation bandwidth.

0

10

20

30

40

50

0 1 2 3

sl
o
w
d
o
w
n

(%
)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

cannealstream.

(a)

0

10

20

30

40

50

0 0.5 1 1.5

sl
o
w
d
o
w
n

(%
)

baseline IPC

mcf

milc

leslie

soplex

lbm

canneal stream.

(b)

Figure 9: Correlation of slowdown with baseline
bandwidth (a) and IPC (b) when the total band-
width just reached the saturation bandwidth.

tion, we use these BWGs to investigate the benchmark
applications’ sensitivities to contention for memory band-
width.

7. SENSITIVITY TO CONTENTION
Previous work [7, 23] has highlighted the correlation

between an application’s bandwidth demand and its
sensitivity to contention. To investigate this we plot the
correlation between application slowdown due to mem-
ory contention and baseline bandwidth in Figure 8(a)
and Figure 9(a). The baseline bandwidths are the ap-
plication’s bandwidth demand when run alone on the
machine. Figure 8(a) and Figure 9(a), shows slowdown
due to contention as the baseline IPC relative to the
IPC at the point when the total bandwidth (Target plus
Bandit) reaches 90% and 100% of the saturation band-
width, respectively. This allows us to investigate the
applications’ sensitivities both before and after the to-
tal bandwidth saturates.

The graphs in Figure 8(a) and Figure 9(a) show hardly
any correlation between slowdown and the baseline band-
width. For example, in Figure 8(a), canneal and stream-
cluster have the lowest (but di�erent) baseline band-
widths, but large (and very similar) slowdowns, while
lbm and soplex have virtually the same baseline band-
width, but very di�erent slowdowns. Figure 9(a) shows
a similar lack of contention. Furthermore, Figure 8(b)
shows the correlation between slowdown and the corre-

6

Slowdown	 with	 90%	 bandwidth	 conten0on	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 10	 David	 Black-‐Schaffer	

Applica<on	 Bandwidth	 Sensi<vi<es	

The Bandwidth Bandit

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
B

an
dw

id
th

Ta
rg

et
IP

C

Bandit Bandwidth

433.milc

Bandwidth
IPC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
B

an
dw

id
th

Ta
rg

et
IP

C

Bandit Bandwidth

470.lbm

•  Significant	 varia<on	 in	 applica<on	 sensi<vi<es	
•  Leads	 to	 different	 impact	 of	 resource	 sharing	

Bandwidth	 sensi0ve:	
Slowdown	 when	 BW	 is	

saturated.	

Latency	 sensi0ve:	
Slowdown	 before	 BW	

is	 saturated.	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 11	 David	 Black-‐Schaffer	

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core Core Core Core

MC

DRAM

cache

0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core

O
Core Core Core

MC

DRAM
0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core

O
Core

O
Core Core

MC

DRAM
0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core

O
Core

O
Core

O
Core

MC

DRAM
0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core

O
Core

O
Core

O
Core

MC

DRAM

O

0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.

Core

O
Core

O
Core

O
Core

MC

DRAM

O

0.0

0.1

0.2

0.3

0.4

0.5

0% 20% 40% 60% 80% 100%
0%

10%

20%

30%

40%

Ta
rg

et
IP

C

Ta
rg

et
B

an
dw

id
th

Bandit Bandwidth

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

I We use cache coloring to reduce impact of cache sharing
I The bandwidth demand of one instance of OMNet++ is less than 25%

) we expect the throuhgput to scale linearly

Predic<ng	 Mul<core	 Scaling	 (BW)	

•  Run	 4	 instances	 of	 the	 same	 applica<on	 	
(Page	 coloring	 to	 guarantee	 no	 cache	 interference.	 Each	 gets	 exactly	 ¼	 of	 the	
cache;	 BW	 effects	 only)	

Profile	 performance	 as	 a	 func0on	 of	 shared	 bandwidth	
	 Predict	 mul0core	 scalability	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 12	 David	 Black-‐Schaffer	

USING	 SENSITIVITY	 MEASUREMENTS	
TO	 MODEL	 SHARING	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 13	 David	 Black-‐Schaffer	

Modeling	 Cache	 Usage	 (Andreas	 Sandberg)	

•  Use	 Pirate	 data	 to	 model	 caches	
•  Caches	 have	 inflows	 and	 ouolows	

–  At	 steady	 state	 these	 are	 equal	
–  Rela<ve	 flow	 rates	 are	 propor<onal	 to	 the	 content	 of	 the	 cache	

Random	
Cache	

LRU	
Cache	

LRU	 cache	 has	 “s0cky”	
data	 that	 is	 accessed	
frequently	 enough	 to	
keep	 it	 in	 the	 cache.	

App	 1	 App	 2	

Evic<ons	

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp

�

expected
measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

�

- 5 -

Rates	 from	 Pirate	 Data	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 14	 David	 Black-‐Schaffer	

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0�

Z

Z0

Z1
H

it
R

at
e

Cache Size0 C

100%

Z1

Z0

Z0�

H
itR

atio

0%

S
iz

e

StickyVolatile

Unused

Cache Size
0 CZ0 Z1

Z1�

Z1�

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

Pirate	 Data	 	 Cache	 Contents	
if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0�

Z

Z0

Z1
H

it
R

at
e

Cache Size0 C

100%

Z1

Z0

Z0�

H
itR

atio

0%

S
iz

e

StickyVolatile

Unused

Cache Size
0 CZ0 Z1

Z1�

Z1�

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0�

Z

Z0

Z1

H
it

R
at

e

Cache Size0 C

100%

Z1

Z0

Z0�

H
itR

atio

0%

S
iz

e

StickyVolatile

Unused

Cache Size
0 CZ0 Z1

Z1�

Z1�

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

“s<cky”	 data	

Pi
ra
te
	 D
at
a	

Gives	 us	 the	
data	 set	 sizes	

Gives	 us	 the	
intensity	 of	
reuse	 in	 each	

data	 set	

S<
ck
y	

D
at
a	 Have	 s<cky	 data	

sizes	 and	 reuse	
intensi0es	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 15	 David	 Black-‐Schaffer	

N
ot
	 L
RU

	

App	 A	

Figh<ng	 for	 Space	 in	 the	 Cache	

•  We	 know	 the	 sizes	 and	 access	
intensi0es	 of	 each	 applica<on’s	
data	 sets	

•  Applica<ons	 fight	 for	 cache	
space	 based	 on	 intensity	 of	
access	 (LRU)	

•  The	 data	 with	 the	 greatest	
access	 intensi0es	 stays	 in	 the	
cache	

•  If	 the	 data	 set	 won’t	 fit,	 then	 it’s	
reuse	 effec<vely	 goes	 away	
(data	 is	 evicted	 before	 it	 is	 used	
again)	

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0�

Z

Z0

Z1

H
it

R
at

e

Cache Size0 C

100%

Z1

Z0

Z0�

H
itR

atio

0%

S
iz

e

StickyVolatile

Unused

Cache Size
0 CZ0 Z1

Z1�

Z1�

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache

50%

Fe
tc

h
R

at
e

Cache Size0 C

Z0�

Z

Z0

Z1

H
it

R
at

e

Cache Size0 C

100%

Z1

Z0

Z0�

H
itR

atio

0%

S
iz

e

StickyVolatile

Unused

Cache Size
0 CZ0 Z1

Z1�

Z1�

Sticky Data Cache Available

Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

“s<cky”	 data	

Pi
ra
te
	

D
at
a	

D
at
a	

App	 A	 App	 A	

Cache	

App	 A	 App	 B	

Cache	

LRU	 Model	 Rnd	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 16	 David	 Black-‐Schaffer	

Predic<ng	 Shared	 Cache	 Usage	

Simulator	 LRU	

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Pairs, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 0.9%

- 10 -

Pairs	

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Groups of Four, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 1.3%

- 11 -

Groups	 of	 4	

1.3%	 Average	
Error	

0.9%	 Average	
Error	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 17	 David	 Black-‐Schaffer	

Individual	 profiles	 of	 performance	 as	 a	 func0on	 of	 shared	 cache	
	 Predict	 workload	 scalability	

Predic<ng	 Throughput	 &	 Bandwidth	

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Pairs, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 0.9%

- 10 -

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Groups of Four, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 1.3%

- 11 -

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Estimating Bandwidth
LRU, Pairs, Hardware

0

5

10

15

0 5 10 15

M
od

el
ed

[
/

]

Measured [/]
5% Error 10% Error

Relative Error: 5.2%

- 12 -

Bandwidth	

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Estimating Throughput
LRU, Pairs, Hardware

0

1

2

3

4

0 1 2 3 4
M

od
el

ed
[

]
Measured []

Bandwidth Limited

Relative Error: 1.8%

- 13 -

Throughput	 (Performance)	

5.2%	 Rela<ve	
Error	 	

1.8%	 Rela<ve	
Error	

15	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 18	 David	 Black-‐Schaffer	

APPLICATIONS	 TO	 TASK-‐BASED	
RUNTIMES	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 19	 David	 Black-‐Schaffer	

CPU	 0	

CPU	 1	

CPU	 2	

CPU	 3	

CPU	 0	

CPU	 1	

CPU	 2	

CPU	 3	

CPU	 0	

CPU	 1	

CPU	 2	

CPU	 3	

Understanding:	 Waste	 Cores	

0%	 25%	 50%	 75%	 100%	
Percent	 of	 Shared	 Cache	

Task	 A	 Performance	 A	

A	

A	

A	

A	

A	 0%	 25%	 50%	 75%	 100%	
Percent	 of	 Shared	 Cache	

Task	 B	 Performance	

B	

B	

B	

B	

B	

B	

Energy?	

Energy?	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 20	 David	 Black-‐Schaffer	

0%	

25%	

50%	

75%	

100%	

0%	 25%	 50%	 75%	 100%	

Ba
nd

w
id
th
	

Percent	 of	 Shared	 Cache	

Bad	 Task	 Performance	

0%	

25%	

50%	

75%	

100%	

0%	 25%	 50%	 75%	 100%	

%
	 B
an

dw
id
th
	

Percent	 of	 Shared	 Cache	

Good	 Task	 Performance	

%	 Bandwidth	

0%	

25%	

50%	

75%	

100%	

0%	 25%	 50%	 75%	 100%	

%
	 B
an

dw
id
th
	

Percent	 of	 Shared	 Cache	

Good	 Task	 Performance	

%	 Bandwidth	

0%	

25%	

50%	

75%	

100%	

0%	 25%	 50%	 75%	 100%	

Ba
nd

w
id
th
	

Percent	 of	 Shared	 Cache	

Bad	 Task	 Performance	

CPU	 0	

CPU	 1	

CPU	 0	

CPU	 1	

CPU	 0	

CPU	 1	

CPU	 2	

CPU	 3	

CPU	 0	

CPU	 1	

CPU	 2	

CPU	 3	

Adap0ng:	 Run	 Bad	 Code	
Good	

Good	

Good	

Good	

Bad	

Good	

Bad	

Bad	

Energy?	

Energy?	

Total	 <me	 is	
shorter	 because	
we	 have	 three	
tasks	 doing	 the	

work.	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 21	 David	 Black-‐Schaffer	

Purng	 it	 Together	

•  Profile	 tasks	
–  Need	 to	 run	 individually	
(Probably	 can’t	 use	 other	 cores	 at	 the	 same	 <me)	
–  Can	 cache	 results	 for	 future	 runs	

•  Predict	 performance	
–  Decide	 which	 tasks	 to	 run	 together	

•  Adapt	 tasks	
–  Compiler/run<me	 interac<on	

•  Problems:	
–  Tasks	 sized	 for	 private	 caches	 	 no	 shared	 resource	 use	
–  Homogeneous	 tasks	 	 likle	 opportunity	 for	 scheduling	
–  Combinatorial	 explosion	 	 too	 many	 scheduling	 choices	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 22	 David	 Black-‐Schaffer	

Acknowledgements	

•  PhD	 Students:	
– David	 Eklöv	

•  StatStack,	 StatCC,	 Cache	 Pirate	
– David	 Eklöv	 and	 Nikos	 Nikoleris	

•  Bandwidth	 Bandit	
– Andreas	 Sandberg	

•  Cache	 Pollu<on,	 Cache	 Sharing	 Models	
– Andreas	 Sembrant	

•  Phase	 Detec<on,	 Phase	 Memory	 Modeling	

•  Colleagues:	
–  Erik	 Hagersten	
–  Stefanos	 Kaxiras	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 23	 David	 Black-‐Schaffer	

QUESTIONS?	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 24	 David	 Black-‐Schaffer	

PHASES	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 25	 David	 Black-‐Schaffer	

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Estimating Throughput
LRU, Pairs, Hardware

0

1

2

3

4

0 1 2 3 4

M
od

el
ed

[
]

Measured []
Bandwidth Limited

Relative Error: 1.8%

- 13 -

Throughput	 (Performance)	

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

measured

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1M 2M 3M 4M 5M 6M 7M

B
an

dw
id

ht
(G

B
/s

)

cache size

470.lbm

0
2
4
6
8

10
12
14
16

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

470.lbm
required

- 6 -

Bandwidth	 as	 a	 func0on	 of	 cache	

HPCA Submission #120– Confidential Draft – Do Not Distribute!!

Modeling Performance Variation Due to Cache Sharing

Abstract

Shared cache contention can cause significant variability
in the performance of co-running applications from run to
run. This variability arises from different overlappings of the
applications’ phases, which can be the result of offsets in appli-
cation start times or other delays in the system. Understanding
this variability is important for generating an accurate view
of the expected impact of cache contention. However, variabil-
ity effects are typically ignored due to the high overhead of
modeling or simulating the many executions needed to expose
them.

This paper introduces a method for efficiently investigat-
ing the performance variability due to cache contention. Our
method relies on input data captured from native execution
of applications running in isolation and a fast, phase-aware,
cache sharing performance model. This allows us to assess
the performance interactions and bandwidth demands of co-
running applications by quickly evaluating hundreds of over-
lappings.

We evaluate our method on a contemporary multicore ma-
chine and show that performance and bandwidth demands can
vary significantly across runs of the same set of co-running
applications. We show that our method can predict application
slowdown with an average relative error of 0.41% (maximum
1.8%) as well as bandwidth consumption. Our method is an
average of 213⇥ faster than native execution of the applica-
tions for performance measurements.

1. Introduction

Shared caches in contemporary multicores have repeatedly
been shown to be critical resources for performance [15, 22,
27, 8, 17]. A significant amount of research has investigated
the impact of cache sharing on application performance [22,
29, 12, 11]. However, most previous research provides a single
value for the slowdown of an application pair due to cache
sharing and ignores the variability that occurs across multiple
runs. This variability occurs due to different overlappings of
application phases that occur when they are offset in time. As
the different phases have varying sensitivities to contention
for the shared cache, the result is a wide range of slowdowns
for the same application pair.

In multicore systems, there can be large performance vari-
ations due to cache contention, since an application’s perfor-
mance depends on how its memory accesses are interleaved
with other applications’ memory accesses. For example, when
running astar/lakes and bwaves from SPEC CPU2006, we
observe an average slowdown of 8% for astar compared to run-
ning it in isolation. However, the slowdown can vary between

0

5

10

15

20

25

30

0 5 10 15 20

2 7.7 17

Po
pu

la
tio

n
[%

]

Slowdown [%]

A
ve

ra
ge

Figure 1: Performance distributions for astar co-running to-

gether with bwaves on an Intel Xeon E5620 based

system. Ignoring performance variablity can be mis-

leading, since the average (7.7%), hides the fact that

the performance can vary between 1% and 17% de-

pending on how the two applications’ phases over-

lap.

1% and 17% depending on how the two applications’ phases
overlap. Figure 1 shows astars slowdown distribution of 100
runs with different offsets in starting times. A developer as-
sessing the performance of these applications could draw the
wrong conclusions from a single run, or even a few runs, since
the probability of measuring a slowdown smaller than 2% is
more than 25%, while the average slowdown is almost 8% and
the maximum slowdown is 17%.

In order to accurately estimate the performance of a mixed
workload, we need to run it multiple times and estimate its
performance distribution. This is a both time- and resource-
consuming process. The distribution in Figure 1 took almost
seven hours to generate; our method reproduces the same
performance distribution in less than 40s.

To do this, we combine the cache sharing model proposed
by Sandberg et al. [16], the phase detection framework de-
veloped by Sembrant et al. [18], with the co-execution phase
optimizations proposed by Van Biesbrouck et al. [24]. This
allows us to efficiently predict the performance and bandwidth
requirements of mixed workloads. In addition, the input data
of the cache model is captured using low-overhead profil-
ing [7] of each application running in isolation. This means
that only a small number of profiling runs need to be done
on the target machine. The modeling can then be performed
quickly for a large number of mixed workloads and runs.

The main contributions of this paper are:
• An extension to a statistical cache-sharing model [16] to

handle time-dependent execution phases.
• A fast and efficient method to predict the performance vari-

1

Program	 behavior	 is	 not	 constant.	

16%	 slowdown	
15%	 of	 the	 <me	

2%	 slowdown	
17%	 of	 the	 <me	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 26	 David	 Black-‐Schaffer	

Applica0on	 Phases	 (Andreas	 Sembrant)	

•  Applica<ons	 have	 <me-‐varying	 behavior	
•  Need	 phase	 informa<on	 for	 accurate	 insight	
•  With	 phase	 informa<on	 we	 can	 do	 smarter	 profiling	 Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

- 6 -

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M
C

P
I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

measured

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1M 2M 3M 4M 5M 6M 7M

B
an

dw
id

ht
(G

B
/s

)

cache size

470.lbm

0
2
4
6
8

10
12
14
16

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

470.lbm
required

- 6 -

Average	 Bandwidth	 Average	 CPI	

Motivation Background Related Work ScarPhase Phase Guided Profiling

Background

0 100 200 300 400 500 600 700

Time in Intervals

Branch Miss Predictions

A B B C0 B D A B B C00 B D EE

Cycles per Instructions

A B B C0 B D A B B C00 B D EE

Basic Block Vectors

A B B C0 B D A B B C00 B D EE

I Program behavior is correlated with what code is executed.

I Changes in executed code reflect changes in other metrics

E⇥cient Software-based Online Phase Classification Andreas Sembrant, Uppsala University

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 27	 David	 Black-‐Schaffer	

Phase	 Detec<on:	 ScarPhase	

•  Online	 (while	 the	 program	 is	 profiled)	
•  2%	 overhead	 via	 hardware	 performance	 counters	 (Intel	 PEBS)	

Applica<on	
Execu<on	

Time	

HASH	

0	
2	
0	

1	

:	

BBV	

B	 B	 B	 B	 B	

ScarPhase:	 Sample-‐based	 Classifica<on	 and	 Analysis	 for	 Run<me	 Phases	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 28	 David	 Black-‐Schaffer	

Efficient	 Data	 Collec<on	 with	 Phases	

Pirate/Bandit	

Profile	 Phases	

Pirate/Bandit	 Pirate/Bandit	

Applica<on	
Execu<on	

Time	

Profile	

Predicting Multicore Scaling – 470.lbm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

470.lbm

1

2

3

4

1 2 3 4

Th
ro

ug
hp

ut

cores

470.lbm
cache pirate

measured

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1M 2M 3M 4M 5M 6M 7M

B
an

dw
id

ht
(G

B
/s

)

cache size

470.lbm

0
2
4
6
8

10
12
14
16

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

470.lbm
required

- 6 -

Average	 Bandwidth	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 29	 David	 Black-‐Schaffer	

Beker	 and	 Faster	 with	 Phases	

•  Faster	 and	 more	 accurate	
•  Easier	 to	 use:	 adapts	 to	 complexity	 of	 applica<on	

39%	 beker	 Much	 beker	 6x	 lower	
overhead	

Accuracy	 Overhead	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 30	 David	 Black-‐Schaffer	

Phases	 Key	 for	 Insight	

StatStack	 (cache	 modeling)	 with	 phases	 20%	 overhead	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 31	 David	 Black-‐Schaffer	

Phases	 in	 Parallel	 Applica<ons	

0

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

2.2

(a) 1 threads

0

1

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

1.1

A B C

(b) 2 threads

0

1

2

3

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

.6

(c) 4 threads

Figure 7. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).

0

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

(a) 1 threads

0
1
2
3
4

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1

A B C

(b) 2 threads

01
23
45
67
89

101112

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1 t2 t3

(c) 4 threads

Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for

the beginning of streamcluster’s execution. The largest detected phases are colored and named

above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamclus-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread

0

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

2.2

(a) 1 threads

0

1

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

1.1

A B C

(b) 2 threads

0

1

2

3

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

.6

(c) 4 threads

Figure 7. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).

0

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

(a) 1 threads

0
1
2
3
4

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1

A B C

(b) 2 threads

01
23
45
67
89

101112

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1 t2 t3

(c) 4 threads

Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for

the beginning of streamcluster’s execution. The largest detected phases are colored and named

above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamclus-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread

0

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

2.2

(a) 1 threads

0

1

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

1.1

A B C

(b) 2 threads

0

1

2

3

0 2 4 6 8 10 12 14

Th
re

ad

Time in Seconds

.6

(c) 4 threads

Figure 7. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).

0

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

(a) 1 threads

0
1
2
3
4

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1

A B C

(b) 2 threads

01
23
45
67
89

101112

0 10 20 30 40 50 60 70 80

Th
re

ad

Time in Seconds

t0 t1 t2 t3

(c) 4 threads

Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for

the beginning of streamcluster’s execution. The largest detected phases are colored and named

above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamclus-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread

0

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

A B C D E

(a) 1 threads

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4

1

2

3

Stage

(b) 2 threads

01
23
45
67
89

101112

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4 Stage

1

2

3

(c) 4 threads

Figure 9. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.

0

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

A B C D E

(a) 1 threads

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4

1

2

3

Stage

(b) 2 threads

01
23
45
67
89

101112

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4 Stage

1

2

3

(c) 4 threads

Figure 9. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.

0

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

A B C D E

(a) 1 threads

0
1
2
3
4
5
6

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4

1

2

3

Stage

(b) 2 threads

01
23
45
67
89

101112

0 5 10 15 20 25 30 35 40 45

Th
re

ad

Time in Seconds

t0 t1 t2 t3 t4 Stage

1

2

3

(c) 4 threads

Figure 9. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.

More	 threads	 	 shorter	 phases	 	 harder	 to	 op0mize	 DVFS,	 cache	 size,	 etc.	

1	 Thread	 2	 Threads	 4	 Threads	

fa
ce
si
m
	

de
du

pe
	

Scalability	
issues	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 32	 David	 Black-‐Schaffer	

Profiling	

Cache	
Sensi<vity	

Bandwidth	
Sensi<vity	

Phases	

Profiling	

Cache	
Sensi<vity	

Bandwidth	
Sensi<vity	

Phases	

The	 Big	 Picture	

•  Individual	 task	 profiles	 enable:	
–  Performance	 predic0on	 for	 co-‐execu<on	 (development)	
–  Efficient	 scheduling	 for	 resource	 conten<on	 (run<me)	

Insight	

Shared	 Cache/
Bandwidth	 Usage	

Workload	
Performance	

Workload	 	
Power	

Profiling	

Cache	
Sensi<vity	

Bandwidth	
Sensi<vity	

Phases	

Modeling	

Resource	
Sharing	

Core	 Power	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 33	 David	 Black-‐Schaffer	

Future	 Work	

•  Phases	 +	 Pirate	 +	 Bandit	
– Lower-‐overhead	 profiling	 &	 more	 detailed	
informa<on	

•  Sharing	 Model	 +	 Bandit	
– Remove	 the	 “unlimited”	 bandwidth	 assump<on	

•  Sharing	 Model	 +	 Phases	
– Understand	 execu<on	 alignment	 (variability)	

•  Understanding	 the	 cause	 of	 slowdowns	
– Cache?	 Bandwidth?	 Synchroniza<on?	

•  Plus	 power…	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 34	 David	 Black-‐Schaffer	

SENSITIVITY	 IN	 MORE	 DETAIL	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 35	 David	 Black-‐Schaffer	

More	 Detail:	 Cache	 Sharing	

•  Three	 SPEC	 benchmark	 applica<ons	
•  Different	 behaviors	 due	 to	 different	 proper<es	
•  Each	 will	 respond	 differently	 to	 cache	 sharing	

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

•  0%	 slower	
•  50x	 bandwidth	

increase	

•  Full	 working	 set	 fits	 in	
the	 cache	

•  Insensi0ve	 to	 latency	

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix
B

W
C

PI
482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

Performance	
(lower	 beker)	

Bandwidth	
(GB/s)	

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#
F/

M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

Cache	 Size	 Cache	 Size	 Cache	 Size	

•  50%	 slower	
•  10x	 bandwidth	

increase	

•  Most	 of	 the	 working	
set	 fits	 in	 the	 cache	

•  Sensi0vity	 to	 latency	

•  0%	 slower	
•  2x	 bandwidth	

increase	

•  Lifle	 of	 the	 working	
set	 fits	 in	 the	 cache	

•  Insensi0ve	 to	 latency	

Perf:	
BW:	

Size:	

Sensi0vity:	

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 36	 David	 Black-‐Schaffer	

More	 Detail:	 The	 Impact	 of	 Prefetching	

•  Different	 degrees	 of	 prefetching	 depending	 on	
applica<on	 access	 pakern	 and	 hardware	

•  Prefetching	 reduces	 applica<on	 sensi<vity	 to	
latency	

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

470.lbm

B
W

C
PI

cache size

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

1M 3M 5M 7M

Miss Ratio
Fetch Ratio

CPI
Bandwidth

Fig. 9. Performance data for 470.lbm with hardware prefetching disabled.
(Fetch ratio and miss ratio are identical.)

cache size, clearly showing that prefetching was helping to
compensate for the reduced cache space. This demonstrates
that 470.lbm not only heavily leverages hardware prefetching,
but also heavily benefits from it.

V. RELATED WORK

The standard approach to measuring performance as a func-
tion of cache size is to use architectural simulators (e.g. [11],
[16]) or performance models (e.g. [14], [18]). For performance
analysis the main limitation of simulation is the long execution
time, which is typically orders of magnitude slower than native
execution. To address this, a substantial amount of work has
been done to improve simulation performance [8], [12], [17],
in particular by trading off accuracy and detail for improved
speed through the use of analytical models [14], [18]. How-
ever, despite these advances, the overhead of simulation and
modeling is still a limitation for performance analysis of real
application with large data sets.

Xu et al. [4] presented a model for predicting the per-
formance degradation of co-running applications contending
for shared cache. As part of their work they co-run a stress
application with each application to measure its performance
as a function of miss ratio. For our purpose of measuring
performance as a function of cache size, their approach has two
limitations: 1) Instead of ensuring that their stress application
steals a fixed amount of cache, they let it freely contend for
space with the Target, and then estimate the average amount
of cache stolen after the fact. Such an average is hard to
correlate to one cache size and is sensitive to program phases.
2) As their micro benchmark freely contends for cache with
the Target, they cannot limit how much off-chip bandwidth it
consumes, which can distort performance measurements5.

5We implemented and used their method to measure the CPI of the simple
sequential micro benchmark in Figure 4. When we tried to steal 4MB of cache,
their stress application consumed sufficient off-chip bandwidth to increase the
measured CPI by 37%.

Doucette and Fedorova [5] also co-run a set of micro
benchmarks, called base vectors, with a Target application
to determine the impact on the target. Their base vector for
measuring shared cache contention has a similar sequential
access pattern to that of the Cache Pirate, but has its working
set size fixed to that of the shared cache. This provides a single
cache “sensitivity” measure for the Target application and does
not relate the performance of the Target to the amount of cache
available, nor to specific performance measurements such as
CPI or off-chip bandwidth.

Cakarevic et al. [19] use a similar set of micro benchmarks
as Doucette and Fedorova, but their work focuses on hardware
characterization. They co-run their micro benchmarks, stress-
ing different shared resources, and investigate how the micro
benchmarks impact each other. This allows them to identify
and characterize the critical shared hardware resources, but not
the behavior of other applications.

VI. CONCLUSION

We have presented a general technique for quickly and ac-
curately measuring application performance characteristics as
a function of the available shared cache space. By leveraging a
co-executing Pirate application that steals shared cache space
and hardware performance counters, this approach works on
standard hardware, accurately reflects the idiosyncrasies of the
system, has a low overhead, and requires no modifications to
either the operating system or target applications

To evaluate our technique we identified and investigated
four key issues: 1) Does the cache available to the Target
behave as expected? 2) How much cache can the Pirate steal?
3) How many Pirate threads can we run before we impact the
Target’s performance? and, 4) Can we minimize the overhead
by dynamically varying the Pirate’s size? For the first question
we used a trace-driven cache simulator to show that the cache
space available to the Target application behaved as expected
with average and maximum absolute fetch ratio errors of
0.2% and 2.7%, respectively. We introduced a method to
determine when the Pirate can execute two threads to increase
its fetch rate without impacting the Target’s performance and
demonstrated that we were able to steal an average of 6.7MB
of the 8MB cache, and up to an average of 6.8MB with
a small decrease in Target execution rate. And, finally, by
dynamically adjusting the amount of cache the Pirate steals
during execution, we were able to reduce the total overhead
to 5.5%, with an average CPI error of only 0.5%

While we motivated this general performance characteriza-
tion approach with an example of how it can be used to explain
throughput scaling, we believe that the data captured by Cache
Pirating is fundamentally important for the understanding
and optimization of applications executing in shared resource
environments. Future work includes extending this approach
to collect performance data against other shared resources and
exploring the range of information available from the ever
increasing variety of performance counters.

!"#

•  Significant	 prefetching,	 and	 it	 benefits	 from	 it	 •  Minimal	
Prefetching	

•  No	 Prefetching	

Prefetching	 Disabled	

Difference	 between	 fetches	
and	 misses	 is	 prefetch	 rate.	

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 37	 David	 Black-‐Schaffer	

More	 Detail:	 Cache	 Pollu<on	

•  We	 can	 measure	 how	 greedy	 an	 applica<on	 is	 and	 how	
sensi0ve	 it	 is	

•  By	 changing	 the	 code	 to	 use	 non-‐caching	 instruc<ons	 we	
can	 make	 an	 applica0on	 less	 greedy	 without	 hur<ng	
performance	 Motivation

Do all applications benefit from caching?

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%

Private Shared

M
is

s
R

at
io

Cache Size

libquantum
lbm

���������	 ��	

����
����

������
����

Not all applications benefit from caching
Better performance if caching can be controlled

- 3 -

Increased Performance of Mixed Workloads

401.bzip2

470.lbm
462.libq.

416.gamess

�
���

���
�

��
�

��	
��	�
��

��������	

������

����
������
	�

��������������
	�

������

��������

����

��

��
��
�
�
��

�����

Not all applications are affected by cache contention
Even cache gobblers get increased performance due
to shared bandwidth

- 11 -

Increased Performance of Mixed Workloads

��������	

������

����
������
	�

��������������
	�

������

���	
���
�

����

���

�
��

��
���

���

�����401.bzip2

470.lbm
462.libq.

416.gamess

�
���

���
�

��
�

���������
���

������� ���

�!

"�!

��!

�
��

��

�

Not all applications are affected by cache contention
Even cache gobblers get increased performance due
to shared bandwidth

- 11 -

Uppsala	 University	 /	 Department	 of	 Informa<on	 Technology	 12/10/2012	 |	 38	 David	 Black-‐Schaffer	

More	 Detail:	 Bandwidth	 Sharing	
•  Sensi<vity	 is	 a	 func<on	 of	 the	 applica<on	

–  Latency	 sensi0vity	 (memory	 level	 parallelism)	
–  Bandwidth	 requirement	 (data	 rate)	

•  And	 the	 hardware	
–  Ability	 to	 handle	 out-‐of-‐order	 requests	 (queue	 sizes)	
–  Access	 pakern	 costs	 (streaming	 vs.	 random	 in	 DRAM	 banks)	

•  BW	 consump0on	 is	 not	 a	 good	 indicator	 of	 BW	 sensi0vity	

0

Bandwidth Bandit: Understanding Memory Contention

Abstract—Applications that are co-scheduled on a multicore
compete for shared resources, such as cache capacity and memory
bandwidth. The performance degradation resulting from this
contention can be substantial, which makes it important to
effectively manage these shared resources. This, however, requires
an understanding of how applications are impacted by such
contention.

While cache-sharing effects have been studied extensively
of late, the effects of memory bandwidth sharing are not as
well explored. This is in large due to its complex nature, as
sensitivity to bandwidth contention depends on bottlenecks at
several levels of the memory-system and the locality properties
of the application’s access stream.

This paper explores the contention effects of increased latency
and decreased memory parallelism at different points in the
memory hierarchy, both of which cause decreases in available
bandwidth. To understand the impact of such contention on
applications, it also presents a method whereby an application’s
overall sensitivity to different degrees of bandwidth contention
can be directly measured. This method is used to demonstrate the
varying contention sensitivity across a selection of benchmarks,
and explains why some of them experience substantial slowdowns
long before the overall memory bandwidth saturates.

I. INTRODUCTION

Cache capacity and memory bandwidth are critical shared
resources in chip multi-processors. Sharing these resources
between cores has many benefits, however, it also leads to
contention, which can have dramatic, negative impacts on the
co-running applications’ performance. Understanding the im-
pact of such contention is therefore essential to fully realize the
computational power of these systems. This work investigates
the effects of contention for off-chip memory (bandwidth)
by first exploring where and why contention occurs in the
memory hierarchy. We then use this knowledge to develop a
method that enables us to measure an application’s sensitivity
to memory contention.

While contention effects have been extensively studied for
cache capacity (e.g. [1]), less is known about contention
for memory bandwidth. Two recent studies [2], [3], show
that the performance impact from contention for off-chip
memory resources can be significant. Their main results, with
respect to memory bandwidth contention, are that applications
with higher (un-contended) bandwidth demands both generate
more memory contention and are generally more sensitive to
contention from others.

The importance of application sensitivity to memory band-
width contention is shown in Figure 1. This data shows
that applications’ sensitivities vary significantly and can be
quite substantial, with slowdowns varying from 3% to 23%
for these benchmarks. It is clear from the data in Figure 1
that applications with similar bandwidth demands (e.g. lbm
and soplex) can exhibit widely varying slowdowns for the
same degree of memory contention. The goal of this research
is to further investigate the mechanisms behind bandwidth
contention and its impact on applications’ performance.

0

10

20

lbm streamcluster

soplex
mcf

0

1

2

sl
ow

do
w

n
(%

)

ba
nd

w
id

th
(G

B
/s

)

slowdown
bandwidth

Fig. 1. Baseline bandwidth (no contention) and slowdown with memory
contention (90% of saturation bandwidth). While all of these applications
exhibit similar baseline bandwidth consumption, their sensitivities to memory
contention vary widely. This variability demonstrates the importance of a more
detailed understanding the effects of memory contention. (For each benchmark
we generated sufficient bandwidth contention to reach 90% of the system
saturation bandwidth for the benchmark. This contention was generated using
the Bandwidth Bandit technique discussed in Section VI.)

To measure application sensitivity to memory contention we
propose the Bandwidth Bandit method. It works by co-running
the application whose performance we want to measure (the
Target) with a Bandit application that generates memory
contention. By carefully controlling the amount of contention
the Bandit generates we can measure the Target’s performance
as a function of the contention generated by the Bandit.

As we want to measure the Target’s sensitivity to memory
contention in isolation, it is important that the Bandit does
not consume any shared resources other than the ones for
which it generates contention. For example, if the Bandit uses
large amounts of shared cache capacity, this might impact
the Target’s performance and distort the measurement. In
addition, the Bandit must generate realistic contention traffic
that appropriately targets the different parts of the memory
hierarchy. To design such a Bandit we must first understand
the sources of memory contention in detail.

This research makes the following contributions:
• We identify the main bottlenecks that can arise due to

memory contention and measure their impact on both
latency and bandwidth. We classify these bottlenecks
into two categories: bottlenecks that limit bandwidth and
bottlenecks increase latency.

• We present the Bandwidth Bandit method. To our knowl-
edge, this is the first method for measuring the perfor-
mance impact of memory contention on real hardware.

• We describe how the Bandit data can be analyzed to
understand an application’s bandwidth and latency sensi-
tivity.

• We use the Bandwidth Bandit method to analyze the
contention sensitivity of a set of applications from the
SPEC2006 and PARSEC benchmark suites.

To present this material, we begin with an overview of
the memory hierarchy (Section II-A) and a discussion of
the relationship between memory level parallelism and la-
tency (Section II-B). We then describe our experimental setup

Slowdown	 at	 90%	 of	 satura0on	 bandwidth	

1

����

��
��
��

��

	
�

��

��
��

��
���

� �
��
�

����������

��	
� ���
�

������
���

����

�
��
�

�
��
�

���	������

Fig. 2. The memory hierarchy. The memory hierarchy can be analyzed with
Equation 1 using the different degrees of parallelism and latency at each level
in the hierarchy. The queues in the figure indicate that the available parallelism
comes from multiple places within the hierarchy. The details of the hierarchy
are discussed in Section IV.

(Section III), and present a series of micro-benchmarks for
characterizing the impacts of latency and parallelism at the
global and local level in the memory hierarchy (Section IV).
With this background, we then introduce the concept of ap-
plication sensitivity to bandwidth and latency (Section V) and
present the details of the Bandwidth Bandit implementation
(Section VI). The Bandit is then validated against a series of
micro-benchmarks, which allow us to describe how to interpret
its output (Section VII). Finally, we present the results of using
the Bandwidth Bandit to investigate the memory contention
sensitivity of a variety of SPEC2006 and PARSEC benchmarks
(Section VIII).

II. BACKGROUND

A. Memory Hierarchy Organization

The memory hierarchy considered in this paper is shown in
Figure 2. If a memory access can not be serviced by the core’s
private caches (not shown in the figure), it is first sent to the
shared L3 cache. It the requested data is not found in the L3
cache, it is sent to the integrated Memory Controller (MC).
The MC has three independent memory channels over which
it communicates with the DRAM modules. Each channel
consists of an address bus and a 64 bit wide data bus. Memory
request are typically 64 bytes (one cache-line), thereby requir-
ing eight transfers over the data bus. Each DRAM module
consists of several independent memory banks, which can
be accessed in parallel, as long as there are no conflicts on
the address and data buses. The combination of independent
channels and memory banks provides for a large degree of
available parallelism in the off-chip memory hierarchy.

The DRAM memory banks are organized into rows (also
called pages) and columns. To address a word of data the MC
has to specify the channel, bank, row and column of the data.
To read or write an address, the whole row is first copied into
the bank’s row buffer. This single-entry buffer (also known as
a page cache) caches the row until a different row in the same
bank is accessed.

On a read or write access three events can occur: A page-hit
when the accessed row is already in the row buffer and the
data can be read/written directly; a page-empty when the row
buffer is empty and the accessed row has to be copied from

the bank before it can be read/written1; or a page-miss when a
row other then the one accessed is cached in the row buffer. In
the case of a page-miss, the cached row has to first be written
back to the memory bank before the newly accessed row is
copied into the row buffer. These three events have different
latencies, with a page-hit having the shortest latency, and a
page-miss having the longest.

B. Memory Hierarchy Performance

From a performance point of view the memory hierarchy
can be described by two metrics: its latency and band-
width. These two metrics are intimately related. Using Little’s
law [?], the average bandwidth achieved by an application can
be expressed as follows:

bandwidth = transfer size⇥ MLP

latency
, (1)

where MLP is the application’s average Memory Level
Parallelism, that is, the average number of concurrent memory
requests it has in-flight, and latency is the average time to
complete the application’s memory accesses. For example,
consider an application with a MLP of one (e.g., a linked list
traversal) and an access latency of 50ns. Such an application
would complete a transfer every 50ns, on average. With a
transfer size of 64 bytes, its memory bandwidth would be
1.3GB/s. If the MLP was increased to two, but the access
latency remained the same, the application would complete
two transfers every 50ns, and its bandwidth would double to
2.6GB/s.

The above equation clearly illustrates that the bandwidth
achieved by an application is determined by both its memory
access latency and its memory parallelism. However, these
parameters vary throughout the memory hierarchy. For ex-
ample, at the bank level, the parallelism is limited by the
number of banks. However, MCs typically queue request to
busy banks. From the higher-level perspective of the MC,
the parallelism, or number of in-flight requests, will include
the request in these queues, and appear larger. The latency
will also appear different, since the time spend in the queues
have to be considered. The above equation will therefore have
different values for latency and MLP depending on where it
is applied in the memory hierarchy.

In this work we will use the above equation to understand
how contention for shared memory resources impacts appli-
cation performance. Such contention can occur throughout
the memory hierarchy, and can both increase access latencies
and reduce the memory parallelism. The resulting effect on
application performance is a function of the application’s
sensitivity to reduced latency or memory parallelism.

III. EXPERIMENTAL SETUP

The experiments presented in this paper have been run on
a quad core Intel Xeon e5520 (Nehalem) machine. Its cache
configuration is detailed in the following table:

1Page-empties occur when the MC preemptively closes a page that hasn’t
been accessed recently to optimistically turn a page-miss into a page-empty.

