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Mul<core	  Memory	  Systems	  
Intel	  Nehalem	  Memory	  Hierarchy	  (3GHz)	  

D.	  Molka,	  et.	  al.,	  Memory	  Performance	  and	  Cache	  Coherency	  Effects	  on	  an	  Intel	  Nehalem	  Mul8processor	  System,	  PACT	  2009.	  
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Impact	  of	  Resource	  Sharing	  
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Measuring	  Shared	  Resource	  Sensi<vity	  

1.   Cache	  Pirate	  
– Measuring	  sensi<vity	  to	  shared	  cache	  alloca<on	  

–  General	  technique	  for	  measuring	  sensi<vity	  in	  real	  HW/SW	  

2.   Bandwidth	  Bandit	  
– Measuring	  sensi<vity	  to	  shared	  bandwidth	  alloca<on	  

3.   Modeling	  Cache	  Usage	  
–  Predic<ng	  shared	  cache	  alloca<on	  and	  performance	  impact	  

–  Use	  Cache	  Pirate	  data	  to	  include	  HW/SW	  complexi<es	  
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Shared	  Cache	  

Overview

Captures performance data for all cache sizes in one run.

Cache Size 8MB
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e
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Average Target slowdown: 5%
(Simulation slowdown: 100⇥ – 1000⇥)
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1.	  Cache	  Pira0ng	  (David	  Eklöv)	  

•  Measure	  cache	  sensi<vity	  by	  stealing	  cache	  
–  Steal	  cache	  with	  a	  “Pirate”	  applica<on	  
–  Measure	  performance	  of	  the	  Target	  
–  Monitor	  the	  Pirate	  to	  verify	  cache	  stolen	  

5%	  Overhead	  
Accurate:	  Includes	  all	  HW/SW	  effects	  

If	  the	  Pirate	  misses	  in	  the	  
cache	  then	  we	  aren’t	  
stealing	  what	  we	  want.	  
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Applica<on	  Cache	  Sensi<vi<es	  Cache Pirating
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Performance	  maintained	  by	  
increasing	  bandwidth	  usage.	  

Effect	  of	  hardware	  prefetching.	  
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Predic<ng	  Mul<core	  Scaling	  (Cache)	  

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp
expected

measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

- 5 -

Cache Pirate – 471.omnetpp

1
2
3
4

1 2 3 4

Th
ro

ug
hp

ut

cores

471.omnetpp

�

expected
measured

0.0

0.5

1.0

1.5

2.0

2.5

1M 2M 3M 4M 5M 6M 7M

C
P

I

cache size

471.omnetpp

�

- 5 -

Shared	  L3	  Cache	  

Performance	  as	  a	  func0on	  
of	  shared	  cache	  size	  
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predicted 

Profile	  performance	  as	  a	  func0on	  of	  shared	  cache	  
	  Predict	  mul0core	  scalability	  

Experiment	  
•  Run	  1-‐4	  independent	  instances	  of	  the	  

same	  program	  on	  a	  4-‐core	  Nehalem	  

•  Performance	  affected	  by	  shared	  cache	  
–  ¼	  of	  the	  shared	  cache	  	  20%	  slower	  
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Predicting Multicore Scaling – 470.lbm
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Bandwidth	  as	  a	  func0on	  
of	  shared	  cache	  size	  
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Predicting Multicore Scaling – 470.lbm
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Performance	  as	  a	  func0on	  
of	  shared	  cache	  size	  

Bandwidth	  Limits	  
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Memory	  Controller	  I/O	  

50%	  reduc<on	  in	  cache	  	  
57%	  increase	  in	  bandwidth	  
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Predicting Multicore Scaling – 470.lbm
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No	  performance	  loss	  with	  
less	  cache	  space…	  	  

…un<l	  you	  run	  out	  of	  
shared	  bandwidth.	  

4	  cores	  @	  3GB/s	  =	  12GB/s	  
System	  max	  =	  10.4GB/s	  



Uppsala	  University	  /	  Department	  of	  Informa<on	  Technology	   12/10/2012	  |	  9	  David	  Black-‐Schaffer	  

2.	  Bandwidth	  Bandit	  (David	  Eklöv)	  

•  Measure	  bandwidth	  sensi<vity	  by	  stealing	  bandwidth	  
•  More	  complex	  than	  Cache	  Pira<ng	  

– Memory	  controller	  
(access	  pakerns,	  row	  buffers,	  re-‐ordering,	  page	  alloca<on)	  

–  Latency	  and	  throughput	  sensi<vi<es	  

Bandit’s bandwidth beyond 4.6GB/s, milc’s bandwidth
drops by the same amount, and it starts to follow the
45� dashed line, which represents the points where the
total bandwidth equals the saturation bandwidth.

At this point, we can make the following two obser-
vations. First, the bandwidth saturates well below the
system peak bandwidth of 10.7GB/s. Second, the per-
formance of milc starts to drop long before the satura-
tion bandwidth is reached. This demonstrates that we
cannot assume that co-running applications will not be
impacted by bandwidth contention as long as the total
bandwidth is below the system peak bandwidth.

6.2 Bandit Access Pattern
To investigate how the applications are impacted by

the Bandit’s access patterns, we re-ran the experiment
described in Section 6 with the Bandit’s locality set to
four and eight. (E.g., accessing four or eight cache lines
from each row before moving on to the next row.) This
causes the Bandit to generate contention that is more
similar to that generated by an application with a se-
quential access pattern. The results for milc and soplex
are shown in Figure 5. The other applications displayed
similar behaviors and are not shown.

The figure shows both the Bandit data collected with
a page locality of one (e.g., random access pattern) and
four. Increasing the locality to eight had a negligible
further impact. The first thing to note is that the sat-
uration bandwidth is greater, e.g. for milc it increased
from 6.4GB/s to 7.3GB/s. This is because the bank
access times for the Bandit are reduced (due to the in-
creased number of page-hits), and the throughput of the
memory banks therefore increases.

Furthermore, if we look at the shape of the Target’s
bandwidth and CPI curves, the curves for a locality
of four appear to be stretched. Indeed, if the data is
presented as a percentage of the saturation bandwidth,
the two curves match almost perfectly, see Figure 6.
This suggest that applications’ relative sensitivity to
contention for bandwidth does not change significantly
with its co-runners’ access patterns. As a result, plot-
ting the bandwidth stolen by the Bandit (the x-axis of
the bandwidth graph) as percentage of the saturation
bandwidth, factors out the impact of the co-runners ac-
cess patterns.

6.3 Bandwidth Graphs
Figure 7 shows Bandwidth Bandit data for the eight

benchmarks. In order to factor out the impact of the
Bandits access pattern, bandwidths are express as a
percentage of the saturation bandwidth. The result-
ing bandwidth graphs (BWGs) present a general, quan-
titative description of the applications’ sensitivities to
bandwidth contention, and allow us to determine how
much an application benefits/su�ers when its available
bandwidth is increased/reduced. In the following sec-
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Figure 8: Correlation of slowdown with base-
line bandwidth (a) and IPC (b) when the total
bandwidth is 90% of the saturation bandwidth.
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Figure 9: Correlation of slowdown with baseline
bandwidth (a) and IPC (b) when the total band-
width just reached the saturation bandwidth.

tion, we use these BWGs to investigate the benchmark
applications’ sensitivities to contention for memory band-
width.

7. SENSITIVITY TO CONTENTION
Previous work [7, 23] has highlighted the correlation

between an application’s bandwidth demand and its
sensitivity to contention. To investigate this we plot the
correlation between application slowdown due to mem-
ory contention and baseline bandwidth in Figure 8(a)
and Figure 9(a). The baseline bandwidths are the ap-
plication’s bandwidth demand when run alone on the
machine. Figure 8(a) and Figure 9(a), shows slowdown
due to contention as the baseline IPC relative to the
IPC at the point when the total bandwidth (Target plus
Bandit) reaches 90% and 100% of the saturation band-
width, respectively. This allows us to investigate the
applications’ sensitivities both before and after the to-
tal bandwidth saturates.

The graphs in Figure 8(a) and Figure 9(a) show hardly
any correlation between slowdown and the baseline band-
width. For example, in Figure 8(a), canneal and stream-
cluster have the lowest (but di�erent) baseline band-
widths, but large (and very similar) slowdowns, while
lbm and soplex have virtually the same baseline band-
width, but very di�erent slowdowns. Figure 9(a) shows
a similar lack of contention. Furthermore, Figure 8(b)
shows the correlation between slowdown and the corre-

6

Insight:	  No	  correla0on	  
between	  bandwidth	  usage	  
and	  sensi0vity	  to	  
bandwidth	  conten0on!	  

Bandit’s bandwidth beyond 4.6GB/s, milc’s bandwidth
drops by the same amount, and it starts to follow the
45� dashed line, which represents the points where the
total bandwidth equals the saturation bandwidth.

At this point, we can make the following two obser-
vations. First, the bandwidth saturates well below the
system peak bandwidth of 10.7GB/s. Second, the per-
formance of milc starts to drop long before the satura-
tion bandwidth is reached. This demonstrates that we
cannot assume that co-running applications will not be
impacted by bandwidth contention as long as the total
bandwidth is below the system peak bandwidth.

6.2 Bandit Access Pattern
To investigate how the applications are impacted by

the Bandit’s access patterns, we re-ran the experiment
described in Section 6 with the Bandit’s locality set to
four and eight. (E.g., accessing four or eight cache lines
from each row before moving on to the next row.) This
causes the Bandit to generate contention that is more
similar to that generated by an application with a se-
quential access pattern. The results for milc and soplex
are shown in Figure 5. The other applications displayed
similar behaviors and are not shown.

The figure shows both the Bandit data collected with
a page locality of one (e.g., random access pattern) and
four. Increasing the locality to eight had a negligible
further impact. The first thing to note is that the sat-
uration bandwidth is greater, e.g. for milc it increased
from 6.4GB/s to 7.3GB/s. This is because the bank
access times for the Bandit are reduced (due to the in-
creased number of page-hits), and the throughput of the
memory banks therefore increases.

Furthermore, if we look at the shape of the Target’s
bandwidth and CPI curves, the curves for a locality
of four appear to be stretched. Indeed, if the data is
presented as a percentage of the saturation bandwidth,
the two curves match almost perfectly, see Figure 6.
This suggest that applications’ relative sensitivity to
contention for bandwidth does not change significantly
with its co-runners’ access patterns. As a result, plot-
ting the bandwidth stolen by the Bandit (the x-axis of
the bandwidth graph) as percentage of the saturation
bandwidth, factors out the impact of the co-runners ac-
cess patterns.

6.3 Bandwidth Graphs
Figure 7 shows Bandwidth Bandit data for the eight

benchmarks. In order to factor out the impact of the
Bandits access pattern, bandwidths are express as a
percentage of the saturation bandwidth. The result-
ing bandwidth graphs (BWGs) present a general, quan-
titative description of the applications’ sensitivities to
bandwidth contention, and allow us to determine how
much an application benefits/su�ers when its available
bandwidth is increased/reduced. In the following sec-
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Figure 8: Correlation of slowdown with base-
line bandwidth (a) and IPC (b) when the total
bandwidth is 90% of the saturation bandwidth.
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Figure 9: Correlation of slowdown with baseline
bandwidth (a) and IPC (b) when the total band-
width just reached the saturation bandwidth.

tion, we use these BWGs to investigate the benchmark
applications’ sensitivities to contention for memory band-
width.

7. SENSITIVITY TO CONTENTION
Previous work [7, 23] has highlighted the correlation

between an application’s bandwidth demand and its
sensitivity to contention. To investigate this we plot the
correlation between application slowdown due to mem-
ory contention and baseline bandwidth in Figure 8(a)
and Figure 9(a). The baseline bandwidths are the ap-
plication’s bandwidth demand when run alone on the
machine. Figure 8(a) and Figure 9(a), shows slowdown
due to contention as the baseline IPC relative to the
IPC at the point when the total bandwidth (Target plus
Bandit) reaches 90% and 100% of the saturation band-
width, respectively. This allows us to investigate the
applications’ sensitivities both before and after the to-
tal bandwidth saturates.

The graphs in Figure 8(a) and Figure 9(a) show hardly
any correlation between slowdown and the baseline band-
width. For example, in Figure 8(a), canneal and stream-
cluster have the lowest (but di�erent) baseline band-
widths, but large (and very similar) slowdowns, while
lbm and soplex have virtually the same baseline band-
width, but very di�erent slowdowns. Figure 9(a) shows
a similar lack of contention. Furthermore, Figure 8(b)
shows the correlation between slowdown and the corre-
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Slowdown	  with	  90%	  bandwidth	  conten0on	  
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Applica<on	  Bandwidth	  Sensi<vi<es	  

The Bandwidth Bandit
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•  Significant	  varia<on	  in	  applica<on	  sensi<vi<es	  
•  Leads	  to	  different	  impact	  of	  resource	  sharing	  

Bandwidth	  sensi0ve:	  
Slowdown	  when	  BW	  is	  

saturated.	  

Latency	  sensi0ve:	  
Slowdown	  before	  BW	  

is	  saturated.	  
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Case Study
Predict the performance impact due to memory contention when co-running
one, two, three and four instances of OMNet++.
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Predic<ng	  Mul<core	  Scaling	  (BW)	  

•  Run	  4	  instances	  of	  the	  same	  applica<on	  	  
(Page	  coloring	  to	  guarantee	  no	  cache	  interference.	  Each	  gets	  exactly	  ¼	  of	  the	  
cache;	  BW	  effects	  only)	  

Profile	  performance	  as	  a	  func0on	  of	  shared	  bandwidth	  
	  Predict	  mul0core	  scalability	  
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USING	  SENSITIVITY	  MEASUREMENTS	  
TO	  MODEL	  SHARING	  
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Modeling	  Cache	  Usage	  (Andreas	  Sandberg)	  

•  Use	  Pirate	  data	  to	  model	  caches	  
•  Caches	  have	  inflows	  and	  ouolows	  

–  At	  steady	  state	  these	  are	  equal	  
–  Rela<ve	  flow	  rates	  are	  propor<onal	  to	  the	  content	  of	  the	  cache	  

Random	  
Cache	  

LRU	  
Cache	  

LRU	  cache	  has	  “s0cky”	  
data	  that	  is	  accessed	  
frequently	  enough	  to	  
keep	  it	  in	  the	  cache.	  

App	  1	   App	  2	  
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if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache
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Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.
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the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
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cache lines are younger than X’s volatile cache lines. This
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are therefore valid sharing configurations, depending on the
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In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
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fetch rate curve, which means that it has two groups of po-
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the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
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(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.
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data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:
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difference approximation of a differential equation. In gen-
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Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
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App	  A	  

Figh<ng	  for	  Space	  in	  the	  Cache	  

•  We	  know	  the	  sizes	  and	  access	  
intensi0es	  of	  each	  applica<on’s	  
data	  sets	  

•  Applica<ons	  fight	  for	  cache	  
space	  based	  on	  intensity	  of	  
access	  (LRU)	  

•  The	  data	  with	  the	  greatest	  
access	  intensi0es	  stays	  in	  the	  
cache	  

•  If	  the	  data	  set	  won’t	  fit,	  then	  it’s	  
reuse	  effec<vely	  goes	  away	  
(data	  is	  evicted	  before	  it	  is	  used	  
again)	  

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:
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{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache
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Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4

if it is younger than the oldest volatile cache line:

asn < Av (3)

Similar to volatile data, we can estimate the maximum
age for a group of sticky data using Little’s law if we know
the size of the group and its reuse rate. This can best be
illustrated with an example:

Example 2: Application Y in Figure 2 does not reuse any
data (the hit rate is 0) when it has access to less cache than
c(Y1). However, it reuses all its data when it has access
to more cache (the fetch rate is 0). This means that it has
one group of potentially sticky data. The size of the group
is c(Y1) and the aggregate reuse rate of all elements in the
group is h(Y1).

When Y starts it will bring its entire data set into the cache
and will start reusing it, causing the data to become sticky.
If X is then started, it will first install data into the unused
part of the cache. The size of Y’s sticky data set will at this
point be c(Y1) and the rest of the cache will be filled with
data belonging to X. Since X does not reuse its data, all its
data will be volatile. We obtain the ages of sticky, as, and
volatile, Av, elements when they start to compete for cache
as follows:

as =
c(Y1)

h(Y1)

Av =
Cv

F
=

C � c(Y1)

f(X1)

{X1,Y1} is a stable cache sharing configuration if Y’s sticky
cache lines are younger than X’s volatile cache lines. This
means that Y is reusing its data set frequently enough to pre-
vent X from pushing it out of the cache.

An interesting feature of this benchmark combination is
that it can have two stable cache sharing configurations. If
X starts first and is allowed to fill the cache with its volatile
data, when Y starts, it will have to compete with X to bring
its data into the cache. At this point, the entire cache consists
of volatile data since Y has not installed enough of its data to
be able to reuse it before it is evicted from the cache. Since X
has a higher fetch rate than Y, it fetches data faster and will
therefore get more cache than Y. In this case, Y will never
fit its entire group of potentially sticky data, and its data it
will instead remain volatile. Both {X0,Y0} and {X1,Y1}
are therefore valid sharing configurations, depending on the
starting order. 2

In the examples so far, both of the benchmarks in a pair
have either had sticky or volatile data, but not both. Real
applications typically have both sticky and volatile data in
the cache at the same time:

Example 3: Application Z in Figure 3 has two drops in its
fetch rate curve, which means that it has two groups of po-
tentially sticky data. This can, for example, happen in ap-
plications reusing two arrays of different size. For a cache
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Figure 3: Z has two groups of sticky data of different
size. When a group of sticky data starts to fit in the cache,
the fetch rate drops. Whenever the fetch ratio drops, the
amount of sticky data at that point decreases (it becomes
sticky) by the same relative amount.

size of c(Z0), the application is able to fit its first group of
data in the cache (the fetch rate drops just before c(Z0)) and
that group becomes sticky. If the application has access to
more cache than c(Z1), its fetch rate drops to zero and all
of its data becomes sticky. In order to calculate the age, as,
of a group of sticky data, we need to know how much that
group contributes to the total hit rate and how big the group
is. Assuming that we know the amount of sticky data in an
application, cs, as a function of cache size (we will show how
to estimate this in Section 2.3.3), we can calculate as(Z0) as:

as(Z0) =
cs(Z0)� cs(Z0�)

h(Z0)� h(Z0�)

2

The age derived in the example above is simply a finite
difference approximation of a differential equation. In gen-
eral, the access rate for sticky elements is defined as:

as(c) =
dcs

dh
(4)

Equation 4 is actually a simplification that assumes that
an application’s execution rate does not change with cache
size. However, execution rate does generally increase as an
application gets access to more cache, and this variation is
accurately captured by our Cache Pirate input data. Not
compensating for the change in execution rate leads an erro-
neous estimate of a block’s contribution to the total hit rate.

4
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Predic<ng	  Shared	  Cache	  Usage	  

Simulator	  LRU	  

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Pairs, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 0.9%

- 10 -

Pairs	  

Background
& Motivation

Modeling
Cache
Sharing

Evaluation

Cache Size Prediction
LRU, Groups of Four, Simulator

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
od

el
ed

S
iz

e
[M

B
]

Simulated Size [MB]
5% Error 10% Error

Average Error: 1.3%

- 11 -

Groups	  of	  4	  

1.3%	  Average	  
Error	  

0.9%	  Average	  
Error	  



Uppsala	  University	  /	  Department	  of	  Informa<on	  Technology	   12/10/2012	  |	  17	  David	  Black-‐Schaffer	  

Individual	  profiles	  of	  performance	  as	  a	  func0on	  of	  shared	  cache	  
	  Predict	  workload	  scalability	  
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APPLICATIONS	  TO	  TASK-‐BASED	  
RUNTIMES	  
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Purng	  it	  Together	  

•  Profile	  tasks	  
–  Need	  to	  run	  individually	  
(Probably	  can’t	  use	  other	  cores	  at	  the	  same	  <me)	  
–  Can	  cache	  results	  for	  future	  runs	  

•  Predict	  performance	  
–  Decide	  which	  tasks	  to	  run	  together	  

•  Adapt	  tasks	  
–  Compiler/run<me	  interac<on	  

•  Problems:	  
–  Tasks	  sized	  for	  private	  caches	  	  no	  shared	  resource	  use	  
–  Homogeneous	  tasks	  	  likle	  opportunity	  for	  scheduling	  
–  Combinatorial	  explosion	  	  too	  many	  scheduling	  choices	  
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QUESTIONS?	  
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PHASES	  
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Bandwidth	  as	  a	  func0on	  of	  cache	  
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Modeling Performance Variation Due to Cache Sharing

Abstract

Shared cache contention can cause significant variability
in the performance of co-running applications from run to
run. This variability arises from different overlappings of the
applications’ phases, which can be the result of offsets in appli-
cation start times or other delays in the system. Understanding
this variability is important for generating an accurate view
of the expected impact of cache contention. However, variabil-
ity effects are typically ignored due to the high overhead of
modeling or simulating the many executions needed to expose
them.

This paper introduces a method for efficiently investigat-
ing the performance variability due to cache contention. Our
method relies on input data captured from native execution
of applications running in isolation and a fast, phase-aware,
cache sharing performance model. This allows us to assess
the performance interactions and bandwidth demands of co-
running applications by quickly evaluating hundreds of over-
lappings.

We evaluate our method on a contemporary multicore ma-
chine and show that performance and bandwidth demands can
vary significantly across runs of the same set of co-running
applications. We show that our method can predict application
slowdown with an average relative error of 0.41% (maximum
1.8%) as well as bandwidth consumption. Our method is an
average of 213⇥ faster than native execution of the applica-
tions for performance measurements.

1. Introduction

Shared caches in contemporary multicores have repeatedly
been shown to be critical resources for performance [15, 22,
27, 8, 17]. A significant amount of research has investigated
the impact of cache sharing on application performance [22,
29, 12, 11]. However, most previous research provides a single
value for the slowdown of an application pair due to cache
sharing and ignores the variability that occurs across multiple
runs. This variability occurs due to different overlappings of
application phases that occur when they are offset in time. As
the different phases have varying sensitivities to contention
for the shared cache, the result is a wide range of slowdowns
for the same application pair.

In multicore systems, there can be large performance vari-
ations due to cache contention, since an application’s perfor-
mance depends on how its memory accesses are interleaved
with other applications’ memory accesses. For example, when
running astar/lakes and bwaves from SPEC CPU2006, we
observe an average slowdown of 8% for astar compared to run-
ning it in isolation. However, the slowdown can vary between
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Figure 1: Performance distributions for astar co-running to-

gether with bwaves on an Intel Xeon E5620 based

system. Ignoring performance variablity can be mis-

leading, since the average (7.7%), hides the fact that

the performance can vary between 1% and 17% de-

pending on how the two applications’ phases over-

lap.

1% and 17% depending on how the two applications’ phases
overlap. Figure 1 shows astars slowdown distribution of 100
runs with different offsets in starting times. A developer as-
sessing the performance of these applications could draw the
wrong conclusions from a single run, or even a few runs, since
the probability of measuring a slowdown smaller than 2% is
more than 25%, while the average slowdown is almost 8% and
the maximum slowdown is 17%.

In order to accurately estimate the performance of a mixed
workload, we need to run it multiple times and estimate its
performance distribution. This is a both time- and resource-
consuming process. The distribution in Figure 1 took almost
seven hours to generate; our method reproduces the same
performance distribution in less than 40s.

To do this, we combine the cache sharing model proposed
by Sandberg et al. [16], the phase detection framework de-
veloped by Sembrant et al. [18], with the co-execution phase
optimizations proposed by Van Biesbrouck et al. [24]. This
allows us to efficiently predict the performance and bandwidth
requirements of mixed workloads. In addition, the input data
of the cache model is captured using low-overhead profil-
ing [7] of each application running in isolation. This means
that only a small number of profiling runs need to be done
on the target machine. The modeling can then be performed
quickly for a large number of mixed workloads and runs.

The main contributions of this paper are:
• An extension to a statistical cache-sharing model [16] to

handle time-dependent execution phases.
• A fast and efficient method to predict the performance vari-

1

Program	  behavior	  is	  not	  constant.	  

16%	  slowdown	  
15%	  of	  the	  <me	  

2%	  slowdown	  
17%	  of	  the	  <me	  
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Applica0on	  Phases	  (Andreas	  Sembrant)	  

•  Applica<ons	  have	  <me-‐varying	  behavior	  
•  Need	  phase	  informa<on	  for	  accurate	  insight	  
•  With	  phase	  informa<on	  we	  can	  do	  smarter	  profiling	  Predicting Multicore Scaling – 470.lbm
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Average	  Bandwidth	   Average	  CPI	  
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I Program behavior is correlated with what code is executed.

I Changes in executed code reflect changes in other metrics

E⇥cient Software-based Online Phase Classification Andreas Sembrant, Uppsala University
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Phase	  Detec<on:	  ScarPhase	  

•  Online	  (while	  the	  program	  is	  profiled)	  
•  2%	  overhead	  via	  hardware	  performance	  counters	  (Intel	  PEBS)	  
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Time	  
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ScarPhase:	  Sample-‐based	  Classifica<on	  and	  Analysis	  for	  Run<me	  Phases	  
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Efficient	  Data	  Collec<on	  with	  Phases	  

Pirate/Bandit	  

Profile	  Phases	  

Pirate/Bandit	   Pirate/Bandit	  
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Beker	  and	  Faster	  with	  Phases	  

•  Faster	  and	  more	  accurate	  
•  Easier	  to	  use:	  adapts	  to	  complexity	  of	  applica<on	  

39%	  beker	  Much	  beker	   6x	  lower	  
overhead	  

Accuracy	   Overhead	  
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Phases	  Key	  for	  Insight	  

StatStack	  (cache	  modeling)	  with	  phases	  20%	  overhead	  
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Figure 7. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).
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Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for

the beginning of streamcluster’s execution. The largest detected phases are colored and named

above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamclus-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread
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beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).
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ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread
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beginning of facesim’s execution. The largest detected phases are colored and named above, with

shorter (fewer executed instructions) phases shown in white for clarity. The facesim benchmark is
data-parallel and has two primary phases, A and B, executed in an alternating pattern. Data-parallel
application divide the work between threads. The length of the phase will therefore shrink with more
threads. For example, the first instance of phase A executes for 2.2 seconds with one thread, but
only for 1.1 seconds with two threads (i.e., linear speedup).
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Figure 8. The detected program phases (color) using ScarPhase as a function of time (x-axis) for

the beginning of streamcluster’s execution. The largest detected phases are colored and named

above, with shorter (fewer executed instructions) phases shown in white for clarity. The streamclus-
ter benchmark creates new threads in each iteration (i.e., thread 1 and 2 starts at t0 in Figure 8b
and stops at t1). Using thread private clusters for phase classification would therefore create a
significant amount of duplicated phase ids.

are colored and named above, with shorter (fewer executed
instructions) phases shown in white for clarity. We record
when windows start and stop executing, and plot the phase
for each window. However, since the windows are measured
uniformly in executed instructions, they can take different
amounts of time to complete. For example, windows can
be executed with different speeds depending on phase, or
the kernel can put the thread to sleep. A control thread (e.g.,
thread 0 in streamcluster and dedup) that only start work-
threads and then goes to sleep will have few execution win-
dows (colored in white) but the thread will take a long time
to complete.

Data-parallel. Figure 7 shows the detected program
phases for facesim. It has two primary phases, A and B,
executed in an alternating pattern. Because data-parallel
application split the work between threads, the length of
each phase will shrink with more threads, as can be seen in
the figure. For example, the first instance of phase A has
a linear speedup from 1 to 2 threads. It executes for 2.2
seconds with 1 thread, but only 1.1 seconds with 2 threads.
Another characteristic of data-parallel applications is that

all threads usually execute the same phases. However, the
phases are not necessary aligned in time. Meaning, thread 1
could execute phase A at the same time as thread 2 execute
phase B.

The benchmark streamcluster is also data-parallel, but
it has noticeably different behavior. Figure 8 shows how
streamcluster creates new work-threads in each iteration.
For example in Figure 8b, threads 1 and 2 start to execute at
t0 and they terminate at t1, where thread 3 and 4 starts.

Pipeline-parallel. Figure 9 shows the detected program
phases for dedup’s whole execution. It executes different
stages (phases) in different threads. For example, in Fig-
ure 9c, Stage 1 has 2 threads and executes phase A, while
Stage 2 executes phase B. The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respec-
tivly. The program finally terminates at t4. It oversubscribes
the system for load balancing (i.e., stage 1 executes much
longer than stage 2 and 3). While the phase behavior in stage
1 and 2 is homogeneous, stage 3 has some phase changes.

Only one phase is executed in stage 1 and 2. This
means that setting the frequency (DVFS) once per thread
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Figure 9. The detected program phases (color) using ScarPhase as a function of time (x-axis) for the

whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.
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whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.
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whole execution of dedup. The largest detected phases are colored and named above, with shorter

(fewer executed instructions) phases shown in white for clarity. The dedup benchmark is pipeline-
parallel and executes different stages (phases) in different threads. It oversubscribes the system for
load balancing (i.e., stage 3 executes much longer than stage 2). The three stages starts to execute
at t0, and they stop at t1, t2 and t3 for stage 2, 1 and 3 respectivly. The program finaly terminates at
t4. While the phase behavior in stage 1 and 2 is homogeneous, stage 3 shows that pipeline-parallel
programs can still benefit from phase-guided runtime optimizations (e.g., DVFS).

in those stages will produce similar results as setting
the frequency per phase. To see if this applies to the
other programs as well, we have plotted the CPI varia-
tions (CPI CoV) for the whole program (Program), within
threads (Thread), within phases (Phase) and within phases
per thread (Phase+Thread) (i.e., the CPI CoV is calculated
per phase using windows from one thread, then averaged
across all threads) in Figure 10.

The figure shows that the CPI variations within threads
are much lower than the variation within the whole execution
for blackscholes, streamcluster and the two pipeline-parallel
benchmarks dedup and ferret. The benchmark blackscholes
has 1 control thread and 2 computation threads. The CPI is
very different between the control and computation threads,
but rather homogeneous in each thread. Streamcluster, on the
other hand, creates 10 computation threads (Figure 8). The

CoV is lower just as a consequence of dividing the execution
into smaller pieces. As expected, for facesim5, there is no
difference between the variations within threads and within
the whole execution as can be seen in Figure 7. However,
dividing the execution into phases provides better results
across all benchmarks, including pipeline-parallel applica-
tions. On average, the CPI CoV is 17%, 9%, 5% and 4% for
Program, Thread, Phase and Phase+Thread respectively.

5.2. Summary

The overall CPI variations and number of detected phases
are lower for PARSEC compared to SPEC as seen in sec-
tion 4. However, the PARSEC benchmarks show a diverse

5If the results from the NAS [4] benchmarks were to be included, the
overall behavior would be more similar to that of facesim.

More	  threads	  	  shorter	  phases	  	  harder	  to	  op0mize	  DVFS,	  cache	  size,	  etc.	  
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•  Individual	  task	  profiles	  enable:	  
–  Performance	  predic0on	  for	  co-‐execu<on	  (development)	  
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Future	  Work	  

•  Phases	  +	  Pirate	  +	  Bandit	  
– Lower-‐overhead	  profiling	  &	  more	  detailed	  
informa<on	  

•  Sharing	  Model	  +	  Bandit	  
– Remove	  the	  “unlimited”	  bandwidth	  assump<on	  

•  Sharing	  Model	  +	  Phases	  
– Understand	  execu<on	  alignment	  (variability)	  

•  Understanding	  the	  cause	  of	  slowdowns	  
– Cache?	  Bandwidth?	  Synchroniza<on?	  

•  Plus	  power…	  
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SENSITIVITY	  IN	  MORE	  DETAIL	  
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More	  Detail:	  Cache	  Sharing	  

•  Three	  SPEC	  benchmark	  applica<ons	  
•  Different	  behaviors	  due	  to	  different	  proper<es	  
•  Each	  will	  respond	  differently	  to	  cache	  sharing	  
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

•  0%	  slower	  
•  50x	  bandwidth	  

increase	  

•  Full	  working	  set	  fits	  in	  
the	  cache	  

•  Insensi0ve	  to	  latency	  
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
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482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Fig. 9. Performance data for 470.lbm with hardware prefetching disabled.
(Fetch ratio and miss ratio are identical.)

cache size, clearly showing that prefetching was helping to
compensate for the reduced cache space. This demonstrates
that 470.lbm not only heavily leverages hardware prefetching,
but also heavily benefits from it.

V. RELATED WORK

The standard approach to measuring performance as a func-
tion of cache size is to use architectural simulators (e.g. [11],
[16]) or performance models (e.g. [14], [18]). For performance
analysis the main limitation of simulation is the long execution
time, which is typically orders of magnitude slower than native
execution. To address this, a substantial amount of work has
been done to improve simulation performance [8], [12], [17],
in particular by trading off accuracy and detail for improved
speed through the use of analytical models [14], [18]. How-
ever, despite these advances, the overhead of simulation and
modeling is still a limitation for performance analysis of real
application with large data sets.

Xu et al. [4] presented a model for predicting the per-
formance degradation of co-running applications contending
for shared cache. As part of their work they co-run a stress
application with each application to measure its performance
as a function of miss ratio. For our purpose of measuring
performance as a function of cache size, their approach has two
limitations: 1) Instead of ensuring that their stress application
steals a fixed amount of cache, they let it freely contend for
space with the Target, and then estimate the average amount
of cache stolen after the fact. Such an average is hard to
correlate to one cache size and is sensitive to program phases.
2) As their micro benchmark freely contends for cache with
the Target, they cannot limit how much off-chip bandwidth it
consumes, which can distort performance measurements5.

5We implemented and used their method to measure the CPI of the simple
sequential micro benchmark in Figure 4. When we tried to steal 4MB of cache,
their stress application consumed sufficient off-chip bandwidth to increase the
measured CPI by 37%.

Doucette and Fedorova [5] also co-run a set of micro
benchmarks, called base vectors, with a Target application
to determine the impact on the target. Their base vector for
measuring shared cache contention has a similar sequential
access pattern to that of the Cache Pirate, but has its working
set size fixed to that of the shared cache. This provides a single
cache “sensitivity” measure for the Target application and does
not relate the performance of the Target to the amount of cache
available, nor to specific performance measurements such as
CPI or off-chip bandwidth.

Cakarevic et al. [19] use a similar set of micro benchmarks
as Doucette and Fedorova, but their work focuses on hardware
characterization. They co-run their micro benchmarks, stress-
ing different shared resources, and investigate how the micro
benchmarks impact each other. This allows them to identify
and characterize the critical shared hardware resources, but not
the behavior of other applications.

VI. CONCLUSION

We have presented a general technique for quickly and ac-
curately measuring application performance characteristics as
a function of the available shared cache space. By leveraging a
co-executing Pirate application that steals shared cache space
and hardware performance counters, this approach works on
standard hardware, accurately reflects the idiosyncrasies of the
system, has a low overhead, and requires no modifications to
either the operating system or target applications

To evaluate our technique we identified and investigated
four key issues: 1) Does the cache available to the Target
behave as expected? 2) How much cache can the Pirate steal?
3) How many Pirate threads can we run before we impact the
Target’s performance? and, 4) Can we minimize the overhead
by dynamically varying the Pirate’s size? For the first question
we used a trace-driven cache simulator to show that the cache
space available to the Target application behaved as expected
with average and maximum absolute fetch ratio errors of
0.2% and 2.7%, respectively. We introduced a method to
determine when the Pirate can execute two threads to increase
its fetch rate without impacting the Target’s performance and
demonstrated that we were able to steal an average of 6.7MB
of the 8MB cache, and up to an average of 6.8MB with
a small decrease in Target execution rate. And, finally, by
dynamically adjusting the amount of cache the Pirate steals
during execution, we were able to reduce the total overhead
to 5.5%, with an average CPI error of only 0.5%

While we motivated this general performance characteriza-
tion approach with an example of how it can be used to explain
throughput scaling, we believe that the data captured by Cache
Pirating is fundamentally important for the understanding
and optimization of applications executing in shared resource
environments. Future work includes extending this approach
to collect performance data against other shared resources and
exploring the range of information available from the ever
increasing variety of performance counters.
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482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying

!"#

F/
M

435.gromacs

B
W

C
PI

401.bzip2 429.mcf

F/
M

454.calculix

B
W

C
PI

482.sphinx3 470.lbm

F/
M

462.libquantum

B
W

C
PI

cache size

450.soplex

cache size

403.gcc

cache size

0.0%

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.0

0.4

0.8

0%

0.3%

0.6%

0.9%

0.0

0.3

0.6

0.0

0.5

1.0

0%
4%
8%

12%
16%

0

1

2

3

0

2

4

0.00%

0.06%

0.12%

0.00

0.03

0.06

0.0

0.5

1.0

0%

2%

4%

0

1

2

0.0

0.5

1.0

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

0%

10%

20%

0

2

4

0.0

0.4

0.8

1M 3M 5M 7M

0%

6%

12%

0

1

2

3

0.0

0.5

1.0

1.5

1M 3M 5M 7M

0%

2%

4%

0.0

0.6

1.2

1.8

0.0

0.6

1.2

1M 3M 5M 7M

Miss Ratio Fetch Ratio CPI Bandwidth

Fig. 8. Performance (CPI), bandwidth requirements (BW) in GB/s, and fetch/miss ratios (F/M) for several benchmarks. This data was collected with hardware
prefetching enabled. .

482.sphinx3 behaves quite differently from 435.gromacs.
As its cache size is decreased its CPI increases by 50%,
while its miss ratio and bandwidth increase by a factor
of 20�. The fetch ratio and miss ratio curves are slightly
different indicating that there is a small amount of prefetching.
However, the significant performance decrease despite the
increased bandwidth indicates that the benchmark is more
sensitive to increased memory latency.

470.lbm shows an 8� difference between its fetch and miss
ratios, indicating 8 prefetched memory accesses for each miss.
However, the relative increase in miss ratio is still roughly 2�.
This indicates that 470.lbm is also relatively insensitive to the
increased latency. The data in Figure 9 show the performance
of 470.lbm with hardware prefetching disabled. This reduces
bandwidth by a third and increases CPI at all cache sizes.
Furthermore, the CPI is now no longer constant with varying
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Not all applications are affected by cache contention
Even cache gobblers get increased performance due
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•  BW	  consump0on	  is	  not	  a	  good	  indicator	  of	  BW	  sensi0vity	  
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Bandwidth Bandit: Understanding Memory Contention

Abstract—Applications that are co-scheduled on a multicore
compete for shared resources, such as cache capacity and memory
bandwidth. The performance degradation resulting from this
contention can be substantial, which makes it important to
effectively manage these shared resources. This, however, requires
an understanding of how applications are impacted by such
contention.

While cache-sharing effects have been studied extensively
of late, the effects of memory bandwidth sharing are not as
well explored. This is in large due to its complex nature, as
sensitivity to bandwidth contention depends on bottlenecks at
several levels of the memory-system and the locality properties
of the application’s access stream.

This paper explores the contention effects of increased latency
and decreased memory parallelism at different points in the
memory hierarchy, both of which cause decreases in available
bandwidth. To understand the impact of such contention on
applications, it also presents a method whereby an application’s
overall sensitivity to different degrees of bandwidth contention
can be directly measured. This method is used to demonstrate the
varying contention sensitivity across a selection of benchmarks,
and explains why some of them experience substantial slowdowns
long before the overall memory bandwidth saturates.

I. INTRODUCTION

Cache capacity and memory bandwidth are critical shared
resources in chip multi-processors. Sharing these resources
between cores has many benefits, however, it also leads to
contention, which can have dramatic, negative impacts on the
co-running applications’ performance. Understanding the im-
pact of such contention is therefore essential to fully realize the
computational power of these systems. This work investigates
the effects of contention for off-chip memory (bandwidth)
by first exploring where and why contention occurs in the
memory hierarchy. We then use this knowledge to develop a
method that enables us to measure an application’s sensitivity
to memory contention.

While contention effects have been extensively studied for
cache capacity (e.g. [1]), less is known about contention
for memory bandwidth. Two recent studies [2], [3], show
that the performance impact from contention for off-chip
memory resources can be significant. Their main results, with
respect to memory bandwidth contention, are that applications
with higher (un-contended) bandwidth demands both generate
more memory contention and are generally more sensitive to
contention from others.

The importance of application sensitivity to memory band-
width contention is shown in Figure 1. This data shows
that applications’ sensitivities vary significantly and can be
quite substantial, with slowdowns varying from 3% to 23%
for these benchmarks. It is clear from the data in Figure 1
that applications with similar bandwidth demands (e.g. lbm
and soplex) can exhibit widely varying slowdowns for the
same degree of memory contention. The goal of this research
is to further investigate the mechanisms behind bandwidth
contention and its impact on applications’ performance.
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Fig. 1. Baseline bandwidth (no contention) and slowdown with memory
contention (90% of saturation bandwidth). While all of these applications
exhibit similar baseline bandwidth consumption, their sensitivities to memory
contention vary widely. This variability demonstrates the importance of a more
detailed understanding the effects of memory contention. (For each benchmark
we generated sufficient bandwidth contention to reach 90% of the system
saturation bandwidth for the benchmark. This contention was generated using
the Bandwidth Bandit technique discussed in Section VI.)

To measure application sensitivity to memory contention we
propose the Bandwidth Bandit method. It works by co-running
the application whose performance we want to measure (the
Target) with a Bandit application that generates memory
contention. By carefully controlling the amount of contention
the Bandit generates we can measure the Target’s performance
as a function of the contention generated by the Bandit.

As we want to measure the Target’s sensitivity to memory
contention in isolation, it is important that the Bandit does
not consume any shared resources other than the ones for
which it generates contention. For example, if the Bandit uses
large amounts of shared cache capacity, this might impact
the Target’s performance and distort the measurement. In
addition, the Bandit must generate realistic contention traffic
that appropriately targets the different parts of the memory
hierarchy. To design such a Bandit we must first understand
the sources of memory contention in detail.

This research makes the following contributions:
• We identify the main bottlenecks that can arise due to

memory contention and measure their impact on both
latency and bandwidth. We classify these bottlenecks
into two categories: bottlenecks that limit bandwidth and
bottlenecks increase latency.

• We present the Bandwidth Bandit method. To our knowl-
edge, this is the first method for measuring the perfor-
mance impact of memory contention on real hardware.

• We describe how the Bandit data can be analyzed to
understand an application’s bandwidth and latency sensi-
tivity.

• We use the Bandwidth Bandit method to analyze the
contention sensitivity of a set of applications from the
SPEC2006 and PARSEC benchmark suites.

To present this material, we begin with an overview of
the memory hierarchy (Section II-A) and a discussion of
the relationship between memory level parallelism and la-
tency (Section II-B). We then describe our experimental setup
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Fig. 2. The memory hierarchy. The memory hierarchy can be analyzed with
Equation 1 using the different degrees of parallelism and latency at each level
in the hierarchy. The queues in the figure indicate that the available parallelism
comes from multiple places within the hierarchy. The details of the hierarchy
are discussed in Section IV.

(Section III), and present a series of micro-benchmarks for
characterizing the impacts of latency and parallelism at the
global and local level in the memory hierarchy (Section IV).
With this background, we then introduce the concept of ap-
plication sensitivity to bandwidth and latency (Section V) and
present the details of the Bandwidth Bandit implementation
(Section VI). The Bandit is then validated against a series of
micro-benchmarks, which allow us to describe how to interpret
its output (Section VII). Finally, we present the results of using
the Bandwidth Bandit to investigate the memory contention
sensitivity of a variety of SPEC2006 and PARSEC benchmarks
(Section VIII).

II. BACKGROUND

A. Memory Hierarchy Organization

The memory hierarchy considered in this paper is shown in
Figure 2. If a memory access can not be serviced by the core’s
private caches (not shown in the figure), it is first sent to the
shared L3 cache. It the requested data is not found in the L3
cache, it is sent to the integrated Memory Controller (MC).
The MC has three independent memory channels over which
it communicates with the DRAM modules. Each channel
consists of an address bus and a 64 bit wide data bus. Memory
request are typically 64 bytes (one cache-line), thereby requir-
ing eight transfers over the data bus. Each DRAM module
consists of several independent memory banks, which can
be accessed in parallel, as long as there are no conflicts on
the address and data buses. The combination of independent
channels and memory banks provides for a large degree of
available parallelism in the off-chip memory hierarchy.

The DRAM memory banks are organized into rows (also
called pages) and columns. To address a word of data the MC
has to specify the channel, bank, row and column of the data.
To read or write an address, the whole row is first copied into
the bank’s row buffer. This single-entry buffer (also known as
a page cache) caches the row until a different row in the same
bank is accessed.

On a read or write access three events can occur: A page-hit
when the accessed row is already in the row buffer and the
data can be read/written directly; a page-empty when the row
buffer is empty and the accessed row has to be copied from

the bank before it can be read/written1; or a page-miss when a
row other then the one accessed is cached in the row buffer. In
the case of a page-miss, the cached row has to first be written
back to the memory bank before the newly accessed row is
copied into the row buffer. These three events have different
latencies, with a page-hit having the shortest latency, and a
page-miss having the longest.

B. Memory Hierarchy Performance

From a performance point of view the memory hierarchy
can be described by two metrics: its latency and band-
width. These two metrics are intimately related. Using Little’s
law [?], the average bandwidth achieved by an application can
be expressed as follows:

bandwidth = transfer size⇥ MLP

latency
, (1)

where MLP is the application’s average Memory Level
Parallelism, that is, the average number of concurrent memory
requests it has in-flight, and latency is the average time to
complete the application’s memory accesses. For example,
consider an application with a MLP of one (e.g., a linked list
traversal) and an access latency of 50ns. Such an application
would complete a transfer every 50ns, on average. With a
transfer size of 64 bytes, its memory bandwidth would be
1.3GB/s. If the MLP was increased to two, but the access
latency remained the same, the application would complete
two transfers every 50ns, and its bandwidth would double to
2.6GB/s.

The above equation clearly illustrates that the bandwidth
achieved by an application is determined by both its memory
access latency and its memory parallelism. However, these
parameters vary throughout the memory hierarchy. For ex-
ample, at the bank level, the parallelism is limited by the
number of banks. However, MCs typically queue request to
busy banks. From the higher-level perspective of the MC,
the parallelism, or number of in-flight requests, will include
the request in these queues, and appear larger. The latency
will also appear different, since the time spend in the queues
have to be considered. The above equation will therefore have
different values for latency and MLP depending on where it
is applied in the memory hierarchy.

In this work we will use the above equation to understand
how contention for shared memory resources impacts appli-
cation performance. Such contention can occur throughout
the memory hierarchy, and can both increase access latencies
and reduce the memory parallelism. The resulting effect on
application performance is a function of the application’s
sensitivity to reduced latency or memory parallelism.

III. EXPERIMENTAL SETUP

The experiments presented in this paper have been run on
a quad core Intel Xeon e5520 (Nehalem) machine. Its cache
configuration is detailed in the following table:

1Page-empties occur when the MC preemptively closes a page that hasn’t
been accessed recently to optimistically turn a page-miss into a page-empty.


