The Swan Approach to Task
Dataflow-Style Execution

Hans Vandierendonck
Queen’s University Belfast

Work performed at FORTH-ICS, Greece

Task Dataflow Parallelism: What?

A program as a collection of inter-dependent tasks
— Tasks are ordered as a DAG

— Tasks are ready to execute when
the tasks that they depend on
have finished

e Qut-of-order execution

— Programmer annotates memory
footprint of task and its access mode (read/write)

— Task graph generated by sequential thread
— Dependencies inferred from annotations
— Cf. out-of-order execution in superscalar processors

; / UPMARC - 28 September 2012

Task Dataflow Parallelism: Why?

* Deal with parallel programming issues
— Determinism, debugging, complexity
— Limited programming overhead
* Applications
— High-performance computing — “lookahead”
 StarSS (SMPSS, CellSS), StarPU, SuperMatrix, codelets, ...

— Wavefront computations
* h264 video encoding/decoding [Chi & Juurlink, ICS’11]
e Smith-Waterman [Agrawal et al, IPDPS’10]

— Concurrent collections [Budimlic et al, Sci. Prog. '10]
— OoO0lJava [Jenista et al, PPoPP’10]
— Legions [Aitken et al, SC'12]

; / UPMARC - 28 September 2012

Design Considerations

* DAG dependency tracking can be very costly
— Memory footprint matching & partially overlapping arguments
— Unknown DAG branching factor
e Asymmetric schedulers
— Master thread executes DAG-generating procedure
— Worker threads execute tasks in DAG
— Single level of parallelism
— E.g. SMPSS, StarPU, SuperMatrix
* Recursive or divide-and-conquer parallelism
— Remains best known way to construct many algorithms
— Generate deep spawn trees

* Mixing recursive parallelism and task dataflow?

; / UPMARC - 28 September 2012

Contributions and Overview

e Efficient dependency tracking

— versioned objects

— with tickets, without edges in the DAG
* Extend Cilk scheduler

— to unify recursive parallelism with dataflow
parallelism

* Experimentally evaluate performance
— on par with Cilk++, outperforms SMPSS

; / UPMARC - 28 September 2012

Contributions and Overview

* Efficient dependency tracking

— versioned objects

— with tickets, without edges in the DAG
* Extend Cilk scheduler

— to unify recursive parallelism with dataflow
parallelism

* Experimentally evaluate performance
— on par with Cilk++, outperforms SMPSS

! / UPMARC - 28 September 2012

Versioned Objects: Adding Task
Dataflow to Cilk++

* Versioned objects

versioned<T> obj;

* Argument annotations

O

indep<T> read-only

outdep<T> read/write
but no exposed reads

inoutdep<T> read/write

cinoutdep<T> commutative
reductionckM> reduction
-- T is a C++ type

-- M is a C++ structure describing
the monad with type T, an
identity value and a reduction

operator

Independent fork/join
int x;
spawn f(x);

SYNC;

Dependency-aware
fork/join

versioned<int> x;
spawn f((indep<int>)x);

SyNnc;

Retain implicit sync at end
of procedure

UPMARC - 28 September 2012

Versioned Objects:

Fast Metadata Determination

versioned<T> blk;

spawn f((indep<T>)

blk');

write-aﬂer-reaﬁ
dependency

spawn g((outdep<T>)

read-after-writ
dependency

spawn h((indep<T>)

Q

blk);

Metadata

7

UPMARC - 28 September 2012

Data

Versioned Objects:

Versioning (a.k.a. Renaming)

versioned<T> blk;

spawn f((indep<T>)

Wrli
e

spawn g((outdep<T>) blk);

[~

spawn h((indep<T>)

read-after-writ
dependency

Q

blk);

Metadata

7

Data

Metadata

7

UPMARC - 28 September 2012

Data

Contributions and Overview

e Efficient dependency tracking
— versioned objects

— with tickets, without edges in the DAG

 Extend Cilk scheduler

— to unify recursive parallelism with dataflow
parallelism

* Experimentally evaluate performance
— on par with Cilk++, outperforms SMPSS

! / UPMARC - 28 September 2012

Observation: The DAG Is a Hypergraph

A sequence of tasks T0, T1, ..., T4
(one argument) and its DAG A hypergraph is:

A graph where edges
@ connect sets of nodes

m Queen’s University
UPMARC - 28 September 2012 10

Observation: The DAG Is a Hypergraph

A sequence of tasks T0, T1, ..., T4 - is actually a hypergraph
(one argument) and its DAG .. is a sequence of groups of tasks

@ (\

Queen’s University \.
Belfast
UPMARC - 28 September 2012 11

r
.

4)

~
. J

Dataflow Synchronization through

Tickets
 Ticket locks SERVING No.
— Fair queuing of customers
\ — One global counter

— One next counter

'-»°“ e

Enqueue Ready? Dequeue

actions ticket := next++ ticket = global ++global
/\ ﬂ

UPMARC - 28 September 2012 12

No. of arrived J No. of served
customers customers

Tickets

Version for in, out and inout deps

 Two queues: readers, writers

— Readers may go in parallel, writers execute in isolation

— Readers wait on all older writers

— Writers wait on all older readers and all older writers

Enqueue Ready? Dequeue
input ++R.next w = W.global ++R.global
(reader) w :=W.next
output if R.next !=R.global true ++W.global
(writer) or W.next != W.global then

rename()

++W.next
infout r:=R.next++ r = R.global ++R.global
(reader w :=W.next++ and w = W.global ++W.global
/&v Fﬂ:ésrt)l niversity

UPMARC - 28 September 2012

13

Ticket-Based Dependency Tracking

Metadata

R.next =0
R.global =0
W.next =0
W.global =0

UPMARC - 28 September 2012

14

Ticket-Based Dependency Tracking

Metadata

R.next =0
R.global =0
W.next=1
W.global =0

UPMARC - 28 September 2012

15

Ticket-Based Dependency Tracking

Metadata

R.next =0
R.global =0
W.next=1
W.global =0

UPMARC - 28 September 2012

16

Ticket-Based Dependency Tracking

Metadata

R.next=1 @

R.global =0
W.next=1
W.global =0

ready when
W.global =1

UPMARC - 28 September 2012

17

Ticket-Based Dependency Tracking

Metadata

R.next=1
R.global =0
W.next=1
W.global =0

UPMARC - 28 September 2012

18

Ticket-Based Dependency Tracking

Metadata

R.next =2 @

R.global =0
W.next=1
W.global =0

ready when
W.global =1

UPMARC - 28 September 2012

ready when
W.global =1

19

Ticket-Based Dependency Tracking

Metadata

R.next =2
R.global =0
W.next=1
W.global =0

ready when

W.global =1 ready when

W.global =1

! / UPMARC - 28 September 2012 20

Ticket-Based Dependency Tracking

Metadata

R.next =3 @
R.global =0
W.next =2
W.global =0

ready when

W.global =1 ready when

W.global =1

' ersity ready when R.global =2
UPMARC - 28 September 202 and WgIObaI =1

Dependency Tracking with Tickets

* Benefits
— O(1) space overhead per task argument
— 0O(1) time overhead per task argument

— No locks; only atomic increments
— Edge-based DAG:

* Amortized O(1) space and time overhead for in, out, in/out
* Constant depends on branching factor

* But: we don’t store a list of ready tasks
— Roots of the DAG
— Because we do not have the edges
— Judicious organization and traversal of pending tasks

; / UPMARC - 28 September 2012

22

Contributions and Overview

e Efficient dependency tracking
— versioned objects
— with tickets, without edges in the DAG

 Extend Cilk scheduler

— to unify recursive parallelism with dataflow
parallelism

* Experimentally evaluate performance
— on par with Cilk++, outperforms SMPSS

! / UPMARC - 28 September 2012

23

Unified Scheduler

Typical Cilk spawn tree Typical task dataflow spawn tree

* Shallow spawn tree

* Dataflow dependencies between
children
* Every task in the spawn tree may
organize its children in a dataflow
graph
* Deep spawn tree * Arbitrary nesting of fork/join and

Queen’s University task gra phs
Belfast
UPMARC - 28 September 2012 24

Unified Scheduler

Mixed fork/join — dataflow Qualitative properties

spawn tree

task graph 1

task graph 2

Cannot maintain busy-leaves
principle
— Non-ready tasks are non-busy
leaves
Maintains work-first principle
— Execute task immediately if data
dependencies allow it
— Keeps the task graph small

Extend work-stealing rules

— Take pending tasks into account

— When returning from a procedure
(provably-good-steal)

— In random work stealing

Stealing in dataflow graphs
generally uses the expensive path

m Queen’s University
UPMARC - 28 September 2012 25

Contributions and Overview

e Efficient dependency tracking
— versioned objects
— with tickets, without edges in the DAG

 Extend Cilk scheduler

— to unify recursive parallelism with dataflow
parallelism

* Experimentally evaluate performance

— on par with Cilk++, outperforms SMPSS

! / UPMARC - 28 September 2012

26

Evaluation

 Methodology
— Implemented scheduler and language as C++0x library

— Compare to Cilk++ on Cilk benchmarks
— Compare to SMPSS on SMPSS benchmarks

* Platform
— 4 quad-core Opteron 8350 HE @ 2GHz, 4 NUMA nodes
— Ubuntu 9.10

— Compilers:

* Unified: gcc 4.6

e Cilk++: gcc 4.2.4 extension

* SMPSS v2.3: custom compiler (Mercurium + gcc)
— Optimization level —04
— Some kernels use BLAS: GotoBLAS2, rev 1.13

; / UPMARC - 28 September 2012

Comparison to Cilk++

spacemul fft
20 16
i 14 =—Unified
~ ==Cilk++
/ i Cilk
g1 _§-10
o 10 v 8
] ral]
w 8 S
6
4 4
2 2
0 T T | I 0 T T T |
0 4 8 12 16 0 4 8 12 16
Number of Threads Number of Threads

m Queen’s University
Beltast
UPMARC - 28 September 2012 28

Comparison to SMPSS

16 cholesky 4.0 transpose
14 ——Unified 35 Unified
-#-SMPSS
12 -=-SMPSS 30
e 10 Q25
o 8 @ 2.0
Q. Q.
“ 6 # “ 15 .
4 1.0 - /
2 / 0.5
O I I T 1 OO T T T]
0 4 8 12 16 0 4 8 12 16
Number of Threads Number of Threads

m Queen’s University
D { $
Dt i
UPMARC - 28 September 2012 29

Divide-and-conquer vs. Task Dataflow

Divide-and-concquer Dataflow style

9 9
I - it
7 - ' 7 -
e N\
o © Use most
=
B>] appropriate style 7/
a4 .]
“ for each algorithm
\ %
) 2 /
1 1
O T T T 1 O T T T 1
0 4 8 12 16 0 4 8 12 16
Number of Threads Number of Threads

Q Matrix multiply, 4Kx4K matrix, 64x64 blocks

UPMARC - 28 September 2012 30

Ti

ckets Make Most Difference When
Scheduler is Stressed

Start of Speedup Start of Linear Scaling
5.0 8
4.5 .
4.0
6
< 3.5 <
Q [
(72] (7] 5
= 3.0 =
Q ()
S S
= 2.5 £ 4
€ .5 c graph
% ' 4 graph f;U 3 /
> 1.5 4 - /7 === hypergraph
' , 4 —+=—hypergraph ’ P
1.0 i /7 =0 tickets + y; 7 =& tickets
0.5 d 1 ’
' /. = = reference 11 ; / — = reference 1:48
/
0_0 T T T T T 1 O T T T T 1
0 1 2 3 4 5 0 100 200 300 400
task time (usec) task time (usec)
m SipaslhL izl Opteron 6172 2.1 GHz, 8x hexa = 48 cores

UPMARC - 28 September 2012 31

Conclusion

 Task dataflow parallelism
— Simple and widely applicable pattern of parallelism
— Divide-and-conquer remains equally relevant!

e Unified scheduler
— Adopts Cilk’s work-first and work stealing principles
— Extends single procedure body with dataflow scheduling
— Versioned objects store metadata and simplify versioning
— Efficient data dependency tracking with tickets

* Evaluation demonstrates performance
— On par with Cilk++
— Outperforms SMPSS, a task dataflow-aware scheduler

; / UPMARC - 28 September 2012

32

Thank Youl!

http://www.github.com/hvdieren/swan

O encor.e: 1 IPEAC

COMPILATION WA@IaN=@Lv]2=
m Queen’s University e
[_»' fact
UPMARC - 28 September 2012 33

