
Distributed Computing and Systems
Computer Science and Engineering Department

Philippas Tsigas
UPMARC Summer School 2018

Lock-free Concurrent Data Structures

Philippas Tsigas 2

Based on data from the CPU DB
[cpudb.stanford.edu]

Why Lock-free Concurrent Data Structures?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 3

Xeon Phi
7290F

72 cores

Multi-cores are here to stay!

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Processes / threads
Each executes a sequence of
instructions
Asynchronous

Shared memory
Processes can read/write single memory
words atomically
Synchronization primitives/instructions

Built into CPU and memory system
Atomic read-modify-write (i.e. a critical section of one instruction)

Compare-and-Swap
Load-Linked / Store-Conditional

4

What kind of parallelism?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Hard to make correct and efficient
We need to exploit parallelism
Need to identify and manage concurrency

The human mind tends to be sequential
Concurrent specifications
Non-deterministic executions

What about races? deadlocks? livelocks? starvation? fairness?
Need synchronization (correctness)…

… but not too much (performance)

5

Parallel programming is rarely a recreational activity.

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Locks are great to ensure correctness
Going back to sequential reasoning (coarse grained ones)

Locks bad for performance (especially coarse grained ones)
1. Sequential computations use single core

More locks ⇒ less concurrency
2. Concurrent systems are “asynchronous”

Thread preempted while holding lock ⇒ no progress (any grained lock)
Deadlocks (any grained lock)

6

Why Lock-free Concurrent Data Structures?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Speedup is function of “parallel” (p) and “sequential” (1-p) fractions of
program

7

10 cores, 60% parallel?

10 cores, 80% parallel?

10 cores, 90% parallel?

10 cores, 99% parallel?

2.17

3.57

5.26

9.17

How important?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 8

Algorithms Data
Structures Programs

[Wirth78]

Why Lock-free Concurrent Data Structures?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 9

• Used directly by applications (e.g., in C/C++, Java, C#, …)
• Used in the language runtime system (e.g., management of work,

implementations of message passing, …)
• Used in traditional operating systems (e.g., synchronization between

top/bottom-half code)
• Used in Stream Processing (Engines, Operators, …)

Data structures come closer to the eyes of application user:
…

Why Lock-free Concurrent Data Structures?

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 10

Objects in shared memory
Supports some set of operations (ADT)
Supports concurrent access by many
processes/threads
Cannot block operations

Op B Op A

Lock-free data structures

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 11

Non-blocking implementations
Wait-free implementation of a CDS [Lamport, 1977]

Every operation finishes in a finite number of its own steps.
Lock-free (≠ FREE of LOCKS) implementation of a CDS [Lamport, 1977]

At least one operation in a set of concurrent operation always makes progress, finishes in a
finite number of its own steps.

Obstruction-free implementation [Herlihy et. al. 2003]
Any operation that executes in isolation is guaranteed to make progress and finish in a finite
number of its own steps.

Definitions can be defined also on operation level.

Liveness - Progress Guarantees

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 12

every garbage node is eventually collected

Liveness cnt.

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Let us add concurrent acesses: What behavior do we want?

13Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Behavior

14Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Behavior

15Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

find(20) -> false

Behavior

16Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T10

Inserting an item with CAS + Find
Adding Concurrency

17Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T10

 find(20):

insert is invoked first

18Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T10

 find(20):

19Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T10

Concurrent case : Behavior

 find(20):

20Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T

20

10

 find(20):

21Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T

20

insert(20) -> true

10

22Lock-free Concurrent Data Structures @UPMARC Summer School 2018

CAS(p:pointer to word, old:word,
new:word):boolean
atomic do

if *p = old then
*p := new;
return true;

else return false;

Philippas Tsigas

 insert(20):

H 30 T

20

insert(20) -> true

Insert returns first

 find(20):

23Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

 insert(20):

H 30 T

20

insert(20) -> true

find(20) -> false

find(20) returns after insert(20) with false: Is this a problem?

24Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

T1

invocation response

T2

T3

Concurrent execution of operations

25Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Interleaving Operations

Concurrent execution

Interleaving operations

26Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

(External) behavior

27Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Sequential execution

Behavior that we observed with find&insert is equivalent to:

28Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Interleaving Operations, or Not

Sequential behavior: invocations & response alternate and
match (on process & object)

Sequential specification: All the legal sequential behaviors,
satisfying the semantics of the ADT
– E.g., for a stack: pop returns the last item pushed

29Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

find(20)

time

insert(20)

find(20)

insert(20)

– Sequential specification defines legal sequential executions
– Concurrent operations allowed to be interleaved
– For every concurrent execution there is a sequential execution

that
 Contains the same operations
 Is legal (obeys the sequential specification)
 Preserves the real-time order of all operations

concurrent
Set

T1

T2

Safety: Linearizability

30Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

find(20)

time

insert(20)

find(20)

insert(20)

– For each operation there must be one single time instant during its
duration where the operation appears to take effect.

– The observed effects should be consistent with a sequential
execution of the operations in that order.

concurrent
Set

T1

T2

Safety: Linearizability

Linearization point

31Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

For updates:
Perform an essential step of an operation by a single atomic

instruction (E.g. CAS to insert an item into a list)
Not always the same instruction
Not always an instruction an instruction of the “update code”

For reads:
Identify a point during the operation’s execution when the result is valid

Not always a specific instruction
Not always the same instruction
Not always an instruction an instruction of the “read code”

32

A recurring technique for finding linerization points

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

An accessible node is never freed.

33

Safety Cnt.

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 34

Basic recurent algorithmic issues

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Example: Insert operation
- which of 2 or 3 gets inserted?
Compare-And-Swap
atomic primitive takes care of this:

CAS(p:pointer to word, old:word, new:word):boolean
atomic do

if *p = old then
*p := new;
return true;

else return false;

1
2

3
4

Insert 3

Insert 2

Back to the algorithmic design of the List: Concurrent Inserts

35Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Problem:

- both nodes are deleted!

Solution: Use bit 0 of pointer to mark deletion status and 2 CAS

1
3

42
Delete

Insert

a)
b)

1
3

42 * a)
b)

c)

What about concurrent inserts and deletes

36Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Is it safe to reclaim node 2?

37

When is it safe to reclaim nodes: Explicit memory managment

1 42 *

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Threads need to traverse safely

Need to remove marked-to-be-deleted nodes while traversing – Help!
Finds previous node, finish deletion and continues traversing from
previous node

1 42 *1 42 * or
? ?

1 42 *

“Help me help you!” schemas

38Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Problem: System memory allocation functionality is blocking!
Solution (lock-free), IBM freelists:

Pre-allocate a number of nodes, link them into a dynamic stack structure,
and allocate/reclaim using CAS

Head Mem 1 Mem 2 Mem n…

Used 1
Reclaim

Allocate

Dynamic memory management

39Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Problem: Because of concurrency (pre-emption in particular), same
pointer value does not always mean same node (i.e. CAS
succeeds)!!!

1 76
4

2 73
4

Step 1:

Step 2:

The ABA problem

40Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Solution: (Valois et al) Add reference counting to each node, in order to
prevent nodes that are of interest to some thread to be reclaimed until
all threads have left the node

1 * 6 *

2 73
4

1 1

? ? ?

1

CAS Failes!

New Step 2:

Reference counting

41Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

For pre-emptive systems, helping is necessary for efficiency and lock-
freeness
For highly concurrent systems, overlapping CAS operations (caused by
helping and others) on the same node can cause heavy contention (Lecture
tomorrow)
Solutions: Manage contention by actively managing back-off and memory
management (Aras et al, lecture tomorrow)

Some techniques for increasing performance I

42
Lock-free Concurrent Data Structures

@UPMARC Summer School 2018

Philippas Tsigas

CAS, FAA, SWAP are expensive and there performance degrades as
contention increases (see CAS expansion tomorrow).

[Lazy 1] Reduce the number of CAS’s by allowing shared pointers to lag behind real
pointers. (Tsigas, Zhang)
[Lazy2] Reduce the number of read/update global shared variables by allowing local
pointers to lag behind shared pointers that lag behind real pointers. (Gidenstam et al.)

Mind the cache:
Array/block based designs

Some techniques for increasing performance II

43
Lock-free Concurrent Data Structures

@UPMARC Summer School 2018

Philippas Tsigas 44

Tail

5 7 14 ⊥ ⊥ ⊥ ⊥ ⊥

Instead of this … Enqueue(12)

12

Tail

Enqueue(20)

20

Tail

Enqueue(18)

18

Tail

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 45

Tail

5 7 14 ⊥ ⊥ ⊥ ⊥ ⊥

Enqueue(12)

12

… we have this:

Every mth Enqueue updates Tail with CAS.

Enqueue(20)

20

Enqueue(18)

18

Tail

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 46

Tail

⊥

Assume m > 1.

Head

Enqueuers A and B
read Tail and cell
pointed to.

A B

cell
=⊥

cell
=⊥

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

a

Assume m > 1.

Head

A stores its value
“a” in queue cell by
using CAS(cell, ⊥, a).

A B

cell
=⊥

cell
=⊥

47

“(Almost) Empty”

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

a

Assume m > 1.

Head

A stores its value
“a” in queue cell by
using CAS(cell, ⊥, a).

A B

cell
=⊥

cell
=⊥

48Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

⊥

Assume m > 1.

Head

Dequeuer C
dequeues “a” and
updates Head.

B

cell
=⊥

49Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

b

Assume m > 1.

Head

Enqueuer B finally
updates queue cell
by performing
CAS(cell, ⊥, b).

B

cell
=⊥

50Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

b

Assume m > 1.

Head

“b” is lost!

51Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

⊥(0)

Assume m > 1.

Head

By adding one bit
to each word, this
problem can be
solved.

52Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

⊥(0)

Assume m > 1.

Head

Enqueuers A and B
read Tail and cell
pointed to.

A B

cell=⊥(0) cell=⊥(0)

53Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

a(1)

Assume m > 1.

Head

A stores its value
“a” in queue cell using
CAS(cell, ⊥(0), a(1)).

A B

cell=⊥(0) cell=⊥(0)

54Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

⊥(1)

Assume m > 1.

Head B

cell=⊥(0)

Dequeuer C
dequeues “a” and
updates Head.

Note: The bit has changed!

55Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

Assume m > 1.

Head

Enqueuer B fails
to update queue
cell because
⊥(0) ≠ ⊥(1)!

⊥(1)

B

cell=⊥(0)

56Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Tail

Assume m > 1.

Head

B must retry its
operation.

⊥(1)

57Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas 58

Queue using cyclical array [Tsigas, Zhang]

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Basic idea:
Cut and unroll the circular array queue
Primary synchronization on the elements

Compare-And-Swap
(NULL1 -> Value -> NULL2 avoids the ABA problem)

Head and tail both move to the right
Need an “infinite” array of elements

59

……

Making it dynamic (queue) [Gidenstam et al.]

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Thread local storage
Last used

Head block/index for Enqueue
Tail block/index for Dequeue

Reduces need to read/update global shared variables

60

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

*

Lazy updating local, shared, data structure pointers

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Blocks occupy one cache-line
Cache-lines for enqueue v.s.
dequeue are disjoint (except
when near empty)
Enqueue/dequeue will cause
coherence traffic for the
affected block
Scanning for the head/tail
involves one cache-line

61

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

Cache-lines

Minding the cache

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst.12, 3 (July 1990), 463-492.
Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In Proceedings
of the 15th International Conference on Distributed Computing (DISC '01), LNCS Springer-Verlag,
pp. 300-314.
Anders Gidenstam, Håkan Sundell, and Philippas Tsigas. 2010. Cache-aware lock-free queues for
multiple producers/consumers and weak memory consistency. In Proceedings of the 14th
international conference on Principles of distributed systems (OPODIS'10), LNCS Springer-Verlag,
pp. 302-317.
Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-blocking concurrent FIFO
queue for shared memory multiprocessor systems. In Proceedings of the thirteenth annual ACM
symposium on Parallel algorithms and architectures (SPAA '01). ACM, pp. 134-143.
John David Valois. 1996. Lock-Free Data Structures. Ph.D. Dissertation. Rensselaer Polytechnic
Institute, Troy, NY, USA. UMI Order No. GAX95-44082.

D Cederman, A Gidenstam, P Ha, H Sundell, M Papatriantafilou, P Tsigas. 2017. Lock-free
concurrent data structures. In Programming Multicore and Many-core Computing Systems. Willey.
M. Herlihy, N. Shavit. The Art of Multiprocessor Programming, Morgan Kaufmann.

62

References

Lock-free Concurrent Data Structures @UPMARC Summer School 2018

Philippas Tsigas

Thank you! Questions?

63Lock-free Concurrent Data Structures @UPMARC Summer School 2018

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63

