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Based on data from the CPU DB
[cpudb.stanford.edu]

Why Lock-free Concurrent Data Structures?
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Xeon Phi
7290F

72 cores

Multi-cores are here to stay!
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Processes / threads
Each executes a sequence of
instructions
Asynchronous

Shared memory
Processes can read/write single memory
words atomically
Synchronization primitives/instructions

Built into CPU and memory system
Atomic read-modify-write (i.e. a critical section of one instruction)

Compare-and-Swap
Load-Linked / Store-Conditional
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What kind of parallelism?
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Hard to make correct and efficient
We need to exploit parallelism
Need to identify and manage concurrency

The human mind tends to be sequential
Concurrent specifications
Non-deterministic executions

What about races? deadlocks? livelocks? starvation? fairness?
Need synchronization (correctness)…

… but not too much (performance)
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Parallel programming is rarely a recreational activity.
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Locks are great to ensure correctness
Going back to sequential reasoning (coarse grained ones)

Locks bad for performance (especially coarse grained ones)
1. Sequential computations use single core

More locks ⇒ less concurrency
2. Concurrent systems are “asynchronous”

Thread preempted while holding lock ⇒ no progress (any grained lock)
Deadlocks (any grained lock)
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Why Lock-free Concurrent Data Structures?
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Speedup is function of “parallel” (p) and “sequential” (1-p) fractions of 
program
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10 cores, 60% parallel?

10 cores, 80% parallel?

10 cores, 90% parallel?

10 cores, 99% parallel?

2.17

3.57

5.26

9.17

How important?
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Algorithms Data 
Structures Programs

[Wirth78]

Why Lock-free Concurrent Data Structures?
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• Used directly by applications (e.g., in C/C++, Java, C#, …)
• Used in the language runtime system (e.g., management of work, 

implementations of message passing, …)
• Used in traditional operating systems (e.g., synchronization between 

top/bottom-half code)
• Used in Stream Processing (Engines, Operators, …) 

Data structures come closer to the eyes of application user:
…

Why Lock-free Concurrent Data Structures?
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Objects in shared memory
Supports some set of operations (ADT)
Supports concurrent access by many 
processes/threads
Cannot block operations 

Op B Op A

Lock-free data structures
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Non-blocking implementations
Wait-free implementation of a CDS [Lamport, 1977]

Every operation finishes in a finite number of its own steps.
Lock-free (≠ FREE of LOCKS) implementation of a CDS [Lamport, 1977]

At least one operation in a set of concurrent operation always makes progress, finishes in a 
finite number of its own steps.

Obstruction-free implementation [Herlihy et. al. 2003]
Any operation that executes in isolation is guaranteed to make progress and finish in a finite 
number of its own steps.

Definitions can be defined also on operation level.

Liveness - Progress Guarantees
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every garbage node is eventually collected

Liveness cnt.
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Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Let us add concurrent acesses: What behavior do we want?
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Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Behavior
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Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

Behavior
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Searching a sorted list, sequencial case:

 find(20):

H 10 30 T

20?

find(20) -> false

Behavior
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 insert(20):

H 30 T10

Inserting an item with CAS + Find 
Adding Concurrency
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 insert(20):

H 30 T10

 find(20):

insert is invoked first
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 insert(20):

H 30 T10

 find(20):
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 insert(20):

H 30 T10

Concurrent case : Behavior

 find(20):
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 insert(20):

H 30 T

20

10

 find(20):

21Lock-free Concurrent Data Structures @UPMARC Summer School 2018



Philippas Tsigas

 insert(20):

H 30 T

20

insert(20) -> true

10

22Lock-free Concurrent Data Structures @UPMARC Summer School 2018

CAS(p:pointer to word, old:word, 
new:word):boolean
atomic do

if *p = old then
*p := new; 
return true;

else return false;
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 insert(20):

H 30 T

20

insert(20) -> true

Insert returns first

 find(20):
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 insert(20):

H 30 T

20

insert(20) -> true

find(20) -> false

find(20) returns after insert(20) with false: Is this a problem? 
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T1

invocation response

T2

T3

Concurrent execution of operations
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Interleaving Operations

Concurrent execution

Interleaving operations

26Lock-free Concurrent Data Structures @UPMARC Summer School 2018



Philippas Tsigas

(External) behavior
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Sequential execution

Behavior that we observed with find&insert is equivalent to:
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Interleaving Operations, or Not

Sequential behavior: invocations & response alternate and 
match (on process & object)

Sequential specification: All the legal sequential behaviors, 
satisfying the semantics of the ADT
– E.g., for a stack: pop returns the last item pushed

29Lock-free Concurrent Data Structures @UPMARC Summer School 2018



Philippas Tsigas

find(20)

time

insert(20)

find(20)

insert(20)

– Sequential specification defines legal sequential executions
– Concurrent operations allowed to be interleaved
– For every concurrent execution there is a sequential execution 

that
 Contains the same operations
 Is legal (obeys the sequential specification)
 Preserves the real-time order of all operations

concurrent 
Set

T1

T2

Safety: Linearizability
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find(20)

time

insert(20)

find(20)

insert(20)

– For each operation there must be one single time instant during its 
duration where the operation appears to take effect.

– The observed effects should be consistent with a sequential
execution of the operations in that order.

concurrent 
Set

T1

T2

Safety: Linearizability

Linearization point
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For updates:
Perform an essential step of an operation by a single atomic  

instruction (E.g. CAS to insert an item into a list)
Not always the same instruction
Not always an instruction an instruction of the “update code”

For reads:
Identify a point during the operation’s execution when the  result is valid

Not always a specific instruction
Not always the same instruction
Not always an instruction an instruction of the “read code”

32

A recurring technique for finding linerization points
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An accessible node is never freed.

33

Safety Cnt.
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Basic recurent algorithmic issues

Lock-free Concurrent Data Structures @UPMARC Summer School 2018



Philippas Tsigas

Example: Insert operation
- which of 2 or 3 gets inserted?
Compare-And-Swap 
atomic primitive takes care of this:

CAS(p:pointer to word, old:word, new:word):boolean
atomic do

if *p = old then
*p := new; 
return true;

else return false;

1
2

3
4

Insert 3

Insert 2

Back to the algorithmic design of the List: Concurrent Inserts
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Problem:

- both nodes are deleted!

Solution: Use bit 0 of pointer to mark deletion status and 2 CAS

1
3

42
Delete

Insert

a)
b)

1
3

42 * a)
b)

c)

What about concurrent inserts and deletes
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Is it safe to reclaim node 2?

37

When is it safe to reclaim nodes: Explicit memory managment

1 42 *
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Threads need to traverse safely

Need to remove marked-to-be-deleted nodes while traversing – Help!
Finds previous node, finish deletion and continues traversing from 
previous node

1 42 *1 42 * or
? ?

1 42 *

“Help me help you!”  schemas 
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Problem: System memory allocation functionality is blocking!
Solution (lock-free), IBM freelists:

Pre-allocate a number of nodes, link them into a dynamic stack structure, 
and allocate/reclaim using CAS

Head Mem 1 Mem 2 Mem n…

Used 1
Reclaim

Allocate

Dynamic memory management
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Problem: Because of concurrency (pre-emption in particular), same 
pointer value does not always mean same node (i.e. CAS 
succeeds)!!!

1 76
4

2 73
4

Step 1:

Step 2:

The ABA problem
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Solution: (Valois et al) Add reference counting to each node, in order to 
prevent nodes that are of interest to some thread to be reclaimed until 
all threads have left the node

1 * 6 *

2 73
4

1 1

? ? ?

1

CAS Failes!

New Step 2:

Reference counting
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For pre-emptive systems, helping is necessary for efficiency and lock-
freeness
For highly concurrent systems, overlapping CAS operations (caused by 
helping and others) on the same node can cause heavy contention (Lecture 
tomorrow)
Solutions: Manage contention by actively managing back-off and memory 
management (Aras et al, lecture tomorrow)

Some techniques for increasing performance I

42
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CAS, FAA, SWAP are expensive and there performance degrades as 
contention increases (see CAS expansion tomorrow).

[Lazy 1] Reduce the number of CAS’s by allowing shared pointers to lag behind real
pointers. (Tsigas, Zhang)
[Lazy2] Reduce the number of read/update global shared variables by allowing local 
pointers to lag behind shared pointers that lag behind real pointers. (Gidenstam et al.)

Mind the cache: 
Array/block based designs 

Some techniques for increasing performance II

43
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Tail

5 7 14 ⊥ ⊥ ⊥ ⊥ ⊥

Instead of this … Enqueue(12)

12

Tail

Enqueue(20)

20

Tail

Enqueue(18)

18

Tail
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Tail

5 7 14 ⊥ ⊥ ⊥ ⊥ ⊥

Enqueue(12)

12

… we have this:

Every mth Enqueue updates Tail with CAS.

Enqueue(20)

20

Enqueue(18)

18

Tail
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Tail

⊥

Assume m > 1.

Head

Enqueuers A and B
read Tail and cell
pointed to.

A B

cell 
=⊥

cell 
=⊥
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Tail

a

Assume m > 1.

Head

A stores its value
“a” in queue cell by
using CAS(cell, ⊥, a).

A B

cell 
=⊥

cell 
=⊥

47

“(Almost) Empty”
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Tail

a

Assume m > 1.

Head

A stores its value
“a” in queue cell by
using CAS(cell, ⊥, a).

A B

cell 
=⊥

cell 
=⊥
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Tail

⊥

Assume m > 1.

Head

Dequeuer C
dequeues “a” and 
updates Head.

B

cell 
=⊥
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Tail

b

Assume m > 1.

Head

Enqueuer B finally
updates queue cell
by performing
CAS(cell, ⊥, b).

B

cell 
=⊥
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Tail

b

Assume m > 1.

Head

“b” is lost!
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Tail

⊥(0)

Assume m > 1.

Head

By adding one bit
to each word, this
problem can be
solved.
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Tail

⊥(0)

Assume m > 1.

Head

Enqueuers A and B
read Tail and cell
pointed to.

A B

cell=⊥(0) cell=⊥(0)
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Tail

a(1)

Assume m > 1.

Head

A stores its value
“a” in queue cell using
CAS(cell, ⊥(0), a(1)).

A B

cell=⊥(0) cell=⊥(0)
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Tail

⊥(1)

Assume m > 1.

Head B

cell=⊥(0)

Dequeuer C
dequeues “a” and 
updates Head.

Note: The bit has changed!
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Tail

Assume m > 1.

Head

Enqueuer B fails
to update queue
cell because
⊥(0) ≠ ⊥(1)!

⊥(1)

B

cell=⊥(0)
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Tail

Assume m > 1.

Head

B must retry its
operation.

⊥(1)
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Queue using cyclical array [Tsigas, Zhang]
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Basic idea:
Cut and unroll the circular array queue
Primary synchronization on the elements

Compare-And-Swap 
(NULL1 -> Value -> NULL2 avoids the ABA problem)

Head and tail both move to the right
Need an “infinite” array of elements

59

……

Making it dynamic (queue) [Gidenstam et al.]
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Thread local storage
Last used

Head block/index for Enqueue
Tail block/index for Dequeue

Reduces need to read/update global shared variables

60

globalTailBlock globalHeadBlock

Thread B

headBlock

head

tailBlock

tail

*

Lazy updating local, shared, data structure pointers
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Blocks occupy one cache-line
Cache-lines for enqueue v.s. 
dequeue are disjoint (except 
when near empty)
Enqueue/dequeue will cause 
coherence traffic for the 
affected block
Scanning for the head/tail 
involves one cache-line

61

globalTailBlock globalHeadBlock

Thread A

headBlock

head

tailBlock

tail

Cache-lines

Minding the cache
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Thank you! Questions?

63Lock-free Concurrent Data Structures @UPMARC Summer School 2018


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Searching a sorted list, sequencial case:
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63

