Performance of Lock-free Data
Structures: Models and Analyses

Philippas Tsigas

Chalmers University of Technology

Motivation

» Lock-free Data Structures:

> Limitations of their lock-based counterparts: deadlocks, convoying
and programming flexibility

> Provide high scalability

» Existing analyses focus on asymptotic behavior

» Framework to estimate the performance:

> Facilitate efficient lock-free designs

» Compare lock-free implementations

» Facilitate analytically data structure implementation optimizations
(i.e. back-off, memory management)

Performance of Lock-free Data Structures: Models and Analyses 2|33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
Parallel_Work(); /* Application specific code, conflict-free */

3
4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Performance of Lock-free Data Structures: Models and Analyses 3(33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while / done do

3 /* Application specific code, conflict-free */
4 | while ! success do

5 current < Read(AP);

6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Performance of Lock-free Data Structures: Models and Analyses 3(33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
3 | Parallel_Work(); /* Application specific code, conflict-free */

4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Performance of Lock-free Data Structures: Models and Analyses 3(33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
Parallel_Work(); /* Application specific code, conflict-free */

3
4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— .AP, current, new);

Performance of Lock-free Data Structures: Models and Analyses 3(33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
Parallel_Work(); /* Application specific code, conflict-free */

3
4 | while ! success do

5 current < Read(AP);
6

7

new <« Critical_Work(current);
success <— .AP, current, new);

Performance of Lock-free Data Structures: Models and Analyses 3(33 Philippas Tsigas

Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
3 | Parallel_Work(); /* Application specific code, conflict-free */

4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Inputs of the analysis:
» Platform parameters: CAS (cc) and Read (rc) latencies, in clock
cycles
» Algorithm parameters:
> Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
» Total number of threads(P)

Performance of Lock-free Data Structures: Models and Analyses 3 ‘ 33 Philippas Tsigas

Example: Treiber Stack Pop operation

Case = Constant == Exponential ™ Poisson

cw = 50, threads = 8
12000 -

10000-
8000-
6000 -

4000- |
6000

Throughput (ops/msec)

2000 4000
Parallel Work (cycles)

433 Philippas Tsigas

Performance of Lock-free Data Structures: Models and Analyses

Executions Under Different Contention

Data Structure Throughput

Parallel work

Performance of Lock-free Data Structures: Models and Analyses 5|33 Philippas Tsigas

Executions Under Different Contention —— parallel work

—— successful retry

Data Structure Throughput —— failed retry

Low contention

Parallel work

B — — AN

1 “11 “11 “1\‘
-

Ts — — —

System |— _ _ —_—

Performance of Lock-free Data Structures: Models and Analyses 5|33 Philippas Tsigas

Executions Under Different Contention

Data Structure Throughput

Peak performance

Parallel work

—— parallel work
—— successful retry

—— failed retry

To —— — 1 — \\

Ti — — — — \ \

T2 — — — — 7

Hm — 1 — — /
System -7

Performance of Lock-free Data Structures: Models and Analyses

5[33

Philippas Tsigas

Executions Under Different Contention

—— parallel work

Data Structure Throughput

—— successful retry

—— failed retry

High contention

Parallel work

To 1 1 1 1 1 1 1 1 \\

Tk 1 1 1 1 1 1 1 1 \

T2 1 1 1 1 1 1 1 1 1 1)

T H 1 1 1 1 1 1 1 1 1
System

Performance of Lock-free Data Structures:

Models and Analyses

5|33 Philippas Tsigas

Impacting Factors

» Failed Retries

— ~

» Atomic CAS Conflicts

— ~ I : I
'CAS

Expansion

— o~

Performance of Lock-free Data Structures: Models and Analyses 6|33 Philippas Tsigas

Analyses

General case: parallel work follows an arbitrary distribution
Special case 1: parallel work is a constant
Special case 2: parallel work follows exponential distribution

vV v .vYvY

The analyses are centered around a single variable P,;, the number
threads inside the retry loop

Performance of Lock-free Data Structures: Models and Analyses 7|33 Philippas Tsigas

General Case

Performance of Lock-free Data Structures: Models and Analyses 8|33 Philippas Tsigas

Analyses: Breakdown of the execution

success period (sp)

Gap

slack time completion time

» Slack time: the gaps in between successful retry loops (a successful
retry does not start immediately after the previous successful one,
See System perspective in the previous figures)

» Completion time: the time from the beginning of a retry loop to its
end

» Expected success period = Expected Completion time + Expected
Slack time

» Throughput = 1 / Expected success period

Performance of Lock-free Data Structures: Models and Analyses 9(33 Philippas Tsigas

Analyses: Breakdown of the execution

success period (sp)

Gap

slack time completion time

N \\
’E | I | | | I | | | I | | | I
N—_

N
/

| | | |
1 1 1
Systemp—— —— e ———— e —— — —

Lt

Performance of Lock-free Data Structures: Models and Analyses 9(33 Philippas Tsigas

General Case: Average-Based Approach

» Throughput: expectation of success period at a random time

» Relies on queueing theory (Little’s law) and focus on average
behaviour o o
ﬁ(Pr/) = PW/(P - Pr/) (1)
» Assuming two modes of contention:

> Non-contended:
@(I?,/):(rc+cw+cc+pw)/P:(rc+cw+cc)/l7,/ (2)

» Contended:

(i) Given P, calculate the expected expansion: & (P,/)
(i) Given Py, calculate the expected slack time: st (l?,/)

Performance of Lock-free Data Structures: Models and Analyses 10|33 Philippas Tsigas

CAS Expansion

» Input: P, threads already in the retry loop

» A new thread attempts to CAS during CompletionTime
(Access + cw + € (Py) + CAS), within a probability h:

» Cost function:

cost(t)
Y

cc

¥ + +
re+ew-cc re+ew re+cw rokew+
+exp expec

cost(t)
Completion Time

- - CompletionTime
WE(P,/+h) :E(P,/) + h X/
0

Performance of Lock-free Data Structures: Models and Analyses 11|33 Philippas Tsigas

Lemma

The expansion of a CAS operation is the solution of the following system
of equations:

% +e (Prl)
rc+ cw + cc + e (Py)

e(Py) = ccx
0
e(PP) = o

We compute e (P, + h), where h < 1, by assuming that there are already
P, threads in the retry loop, and that a new thread attempts to CAS
during the retry, within a probability h:

v

Performance of Lock-free Data Structures: Models and Analyses 12|33 Philippas Tsigas

dt

riw™®
d(t
e(P,/+h):e(P,,)+h></ ((3)
0 riw

rc+cw—cc rc+cw
:eumy+(/ dU)dr+/) 4
0

I‘/W(+) rc+cw—cc I’/W(+)

re+cw+e(Py) Aw*)
+/ Aﬂgm+/ Aﬂﬂmﬁ

re+cw r/W() rc+cw+e(Py) fIW(+)
rc+cw ¢ re+cw+e(Py) cc
:e(P,/)+(/ — dt+/ ﬁdt)h
rc+cw—cc riw rc+cw rlw
CC2
5 Pr) x
e (Py) 4 hx 28 +’) <.
rw)
Pi+h) —e(Py) % +e(Py)x
This leads to e(Pnth)—e(Pn) _ 5 e (Pn) “ When making
h rAw)
h tend to 0, we finally obtain &' (Py) = cc x ﬁ%.

Performance of Lock-free Data Structures: Models and Analyses 13|33 Philippas Tsigas

Expansion Model

CW " 1w 3mm12m 20

6-
£
s
- 4
5}
a2
'c
2
c
k)
2 -
% -
X _
L / =
/// /////////
= ——
/// ///
=
0 e
0 2 4 6 8
Threads in Retry Loop
Performance of Lock-free Data Structures: Models and Analyses 14|33 Philippas Tsigas

Slack Time

» Input: P, threads already in the retry loop
» Assume a thread has equal probability to be anywhere in the critical
work or expansion
P threads

rr v

> Expectation of the minimum distance to Access (failed CAS)

st (Py) = (cw + e (Pn))/(Py +1) 3)

15|33 Philippas Tsigas

Performance of Lock-free Data Structures: Models and Analyses

Unified Solving for Throughput Estimate

» Unified solving:

Py+2 —
reravtee Tt l oy e (Py)) + 2, (4)
Prl 'Drl +1
The system switches from being non-contended to being contended
5 _ pl0)
at Py = P,”, where

cc+cw —rc (\/1+4(rc—|—cw+cc)(cw+2cc) _1>.

2(ew + 2cc) (cc+ cw — rc)?

0
Pr(l):

» Fixed point iteration on P, to find the value that obeys Little's Law

Performance of Lock-free Data Structures: Models and Analyses 16|33 Philippas Tsigas

Special Case (Constant parallel work)

Performance of Lock-free Data Structures: Models and Analyses 17|33 Philippas Tsigas

(f)-Cyclic Executions

» Periodic: every thread is in the same state as one period before — parallel work
> Shortest period contains exactly 1 successful attempt and — successful retry|
exactly f fails per thread — failed retry
\\ idle thread
Past Present Future
— | —
To
T
T2
T3
System - —

SITE3

Performance of Lock-free Data Structures: Models and Analyses 18|33

"Philippas Tsigas

Inevitable and Wasted Failures

To
T
T2
Ts

System

System

To
Ti
T2
Ts

VS.
I I I I I I I I I I I I I
T T T T T T T T T T T T T
I I I I I I I I I I I I I I
T T T T T T T T T T T T T T
I I I I I I I I I I I I I
T T T T T T T T T T T T T
I I I I I I I I I I I I I I
T T T T T T T T T T T T T T

Performance of Lock-free Data Structures: Models and Analyses 19|33 Philippas Tsigas

Throughput: Combining Impacting Factors

> Input: P, (Average number of threads inside retry loop)

1. Calculate expansion: e (Py)
2. Compute amount of work in a retry:
Retry = Read + Critical_Work + e (Py) + CAS
3. Estimate number of logical conflicts:
LogicalConflicts(Retry, Parallel _Work, Threads)

~~ Average number of threads inside the retry loop

Performance of Lock-free Data Structures: Models and Analyses 20(33 Philippas Tsigas

Throughput: Combining Impacting Factors

> Input: P, (Average number of threads inside retry loop)

1. Calculate expansion: e (Py)
2. Compute amount of work in a retry:
Retry = Read + Critical_Work + e (Py) + CAS
3. Estimate number of logical conflicts:
LogicalConflicts(Retry, Parallel _Work, Threads)

~~ Average number of threads inside the retry loop

» Convergence via fixed point iteration

Performance of Lock-free Data Structures: Models and Analyses 20(33 Philippas Tsigas

Special Case (Parallel work follows
exponential distribution)

Performance of Lock-free Data Structures: Models and Analyses 21|33 Philippas Tsigas

Special Case: Constructive Approach

» Construct the execution step by step (based on Markov Chains)

» P, renders the state of the system. System is in state i, if there are
i threads inside the retry loop, and the system changes state after
success CAS.

» In state i/, we know that there are P — j threads in the parallel work

> Parallel work follows exponential distribution (memoryless), we do
not need to track P — j threads in the parallel work

» Transition probabilities (state i to i + k): estimate the success
period given that we are in state i then consider the probability of
k + 1 threads to leave the parallel work and enter to the retry loop
during this interval

» Calculate stationary distribution and stochastic sequence of success
periods results in the throughput estimate

Performance of Lock-free Data Structures: Models and Analyses 2233 Philippas Tsigas

Results

Performance of Lock-free Data Structures: Models and Analyses 23|33 Philippas Tsigas

Synthetic Tests Results

Case == Low == High == Average == Real

cw = 50, threads = 8 cw = 200, threads = 8

12000- 80001
810000— 60004
@ 8000-
)
£ 6000- 4000-
12
S 4000-, : : ‘
= 2000 4000 6000 2500 5000 7500 10000
a cw = 600, threads = 8 cw = 1600, threads = 8
ey J
5 4000
] 1500~
£ 3000-
'_

2000- 10001

0 5000 10000 15000 20000 O 10000 20000 30000 40000

Parallel Work (cycles)

Performance of Lock-free Data Structures: Models and Analyses 2433 Philippas Tsigas

Treiber Stack - Pop Results

Case == Low == High == Average == Real Case == Low == High == Average == Real
cw = 50, threads = 6 cw = 50, threads = 8
12000~ 12000-
10000- 10000-
—~ 8000- —~ 8000-
[S) [$)
b b
g 6000 g 6000-
< <
%] %)
S 4000-, ‘ ‘ : ; S 4000- ‘ ‘ ‘
= 0 1000 2000 3000 4000 = 0 2000 4000 6000
'g cw = 1500, threads = 6 §_ cw = 1500, threads = 8
£ 2000- £ 2000-
(=) (=]
> >
<l <}
ey £
F 1500- = 1500-
1000- 1000-
0 10000 20000 30000 0 10000 20000 30000 40000
Parallel Work (cycles) Parallel Work (cycles)

Performance of Lock-free Data Structures: Models and Analyses 25|33 Philippas Tsigas

Synthetic tests Results

Metric = Throughput = - Failures
Case == Average == Bound == Constructive == Real Constant == Real Poisson

—— 1.0e+07- =

1e+07- 7.5e+06-

S 0.0e+00-

0 30 60 90 120

o

@

+

o

o
|

N

)

T

o

>
\

Throughput (ops/sec), Failures (micro)

0e+00- e
00 400

0 50 100 15

Performance of Lock-free Data Structures: Models and Analyses 26|33 Philippas Tsigas

MS Queue - Enqueue Results

Metric == Throughput = Failures Case == Average == Bound == Real

No MM With MM
—~ 8e+06-
o
o
€ 7500000~
n
<4 6e+06-
3
©
w
25000000~
[5)
3 4e+06-
2
o
5,

2500000~
& 2e+06-
g
[
=
=

0- 0e+00-

300 0 100 200 300
Parallel Work (units of work)

Performance of Lock-free Data Structures: Models and Analyses 27133 Philippas Tsigas

Applications

Performance of Lock-free Data Structures: Models and Analyses 2833 Philippas Tsigas

Back-off: Treiber Stack Pop

» Our Back-off vs. Exponential and Linear Back-off

Applications

Value —0---2--8 Type ™ Exp. ™ Linear = None == Ours

o ¥
@ 1e+07-
©1e+07- A
@ A
a P onis
o RIS L
T8et06- ‘e, Y
=
>
o
5
Se-+06-
o
g
=
'_

4e+06-

0

50
Parallel Work (units of work)

Performance of Lock-free Data Structures: Models and Analyses 29|33

Philippas Tsigas

Back-off Applications

» Delaunay Triangulation (pw is known): back-off for the time
difference between the peak pw (computed by our analysis) and the
actual pw

» Workload originated from global operators of exchanges for financial
markets (pw is unknown): estimate the pw value from the number
of fails with a sliding window

Back-off on Trade Agg. Back-off on Delaunay Tri.
144 4threads 6 threads 8 threads N OO74threads 6 threads 8 threads
1.3 E
2 £ 095-
c
H g
g 12- 3
[= 9}
3 5090~
Nii- T
< N
£ ©
S E085-
Z10- <]
I l i
I I 0.80-
s3 s6s50 s3 s6s50 s3 s6s50 bikerl r2 bikerl r2 bikerl r2
Dataset Dataset

Performance of Lock-free Data Structures: Models and Analyses 3033 Philippas Tsigas

Memory Management Applications

» Memory management introduces extra work

» Traditionally, a big block of work that is executed once in a while,
after reaching a threshold for the number of object waiting for
reclamation

» Twist:

Split this big block into equally sized smaller chunks
Track the number of fails to determine contention
No MM execution under low contention

Call MM (as back-off) only under high contention

vy vy VvVYy

Performance of Lock-free Data Structures: Models and Analyses 31|33 Philippas Tsigas

Conclusion

> Three new analyses for the performance of lock-free data structures

» Validate our model using synthetic tests and several reference data
structures (deque, queue, stack, shared counter, priority queue)

» Exploit our analyses for back-off and memory management
optimization

» For details, please see [1] and [2]

Performance of Lock-free Data Structures: Models and Analyses 3233 Philippas Tsigas

References

[1] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas. “Analyzing
the Performance of Lock-Free Data Structures: A Conflict-Based
Model”. In: Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015,
Proceedings. 2015, pp. 341-355. URL:
https://doi.org/10.1007/978-3-662-48653-5_23

[2] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas. “How
Lock-free Data Structures Perform in Dynamic Environments:
Models and Analyses”. In: 20th International Conference on
Principles of Distributed Systems, OPODIS 2016, December 13-16,
2016, Madrid, Spain. 2016, 23:1-23:17. URL:
https://doi.org/10.4230/LIPIcs.0PODIS.2016.23.

Performance of Lock-free Data Structures: Models and Analyses 33|33 Philippas Tsigas

https://doi.org/10.1007/978-3-662-48653-5_23
https://doi.org/10.4230/LIPIcs.OPODIS.2016.23

	Results
	Applications

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

