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Motivation

» Lock-free Data Structures:

> Limitations of their lock-based counterparts: deadlocks, convoying
and programming flexibility

> Provide high scalability

» Existing analyses focus on asymptotic behavior

» Framework to estimate the performance:

> Facilitate efficient lock-free designs

» Compare lock-free implementations

» Facilitate analytically data structure implementation optimizations
(i.e. back-off, memory management)
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Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
Parallel_Work(); /* Application specific code, conflict-free */

3
4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);
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Model

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do
3 | Parallel_Work(); /* Application specific code, conflict-free */

4 | while ! success do

5 current < Read(AP);
6

7

new < Critical_Work(current);
success <— CAS(AP, current, new);

Inputs of the analysis:
» Platform parameters: CAS (cc) and Read (rc) latencies, in clock
cycles
» Algorithm parameters:
> Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
» Total number of threads(P)
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Example: Treiber Stack Pop operation

Case = Constant == Exponential ™ Poisson

cw = 50, threads = 8
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Executions Under Different Contention

Data Structure Throughput

Parallel work
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Executions Under Different Contention —— parallel work

—— successful retry

Data Structure Throughput —— failed retry

Low contention

Parallel work
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Executions Under Different Contention

Data Structure Throughput

Peak performance

Parallel work

—— parallel work
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Executions Under Different Contention

—— parallel work

Data Structure Throughput
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—— failed retry
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Impacting Factors

» Failed Retries

— ~

» Atomic CAS Conflicts

— ~ I : I
'CAS

Expansion

— o~
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Analyses

General case: parallel work follows an arbitrary distribution
Special case 1: parallel work is a constant
Special case 2: parallel work follows exponential distribution

vV v .vYvY

The analyses are centered around a single variable P,;, the number
threads inside the retry loop
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General Case
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Analyses: Breakdown of the execution

success period (sp)

Gap

slack time completion time

» Slack time: the gaps in between successful retry loops (a successful
retry does not start immediately after the previous successful one,
See System perspective in the previous figures)

» Completion time: the time from the beginning of a retry loop to its
end

» Expected success period = Expected Completion time + Expected
Slack time

» Throughput = 1 / Expected success period
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Analyses: Breakdown of the execution

success period (sp)

Gap

slack time completion time
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General Case: Average-Based Approach

» Throughput: expectation of success period at a random time

» Relies on queueing theory (Little’s law) and focus on average
behaviour o o
ﬁ(Pr/) = PW/(P - Pr/) (1)
» Assuming two modes of contention:

> Non-contended:
@(I?,/):(rc+cw+cc+pw)/P:(rc+cw+cc)/l7,/ (2)

» Contended:

(i) Given P, calculate the expected expansion: & (P,/)
(i) Given Py, calculate the expected slack time: st (l?,/)
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CAS Expansion

» Input: P, threads already in the retry loop

» A new thread attempts to CAS during CompletionTime
(Access + cw + € (Py) + CAS), within a probability h:

» Cost function:

cost(t)
Y

cc

¥ + +
re+ew-cc re+ew re+cw rokew+
+exp expec

cost(t)
Completion Time

- - CompletionTime
WE(P,/+h) :E(P,/) + h X/
0
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Lemma

The expansion of a CAS operation is the solution of the following system
of equations:

% +e (Prl)
rc+ cw + cc + e (Py)

e(Py) = ccx
0
e(PP) = o

We compute e (P, + h), where h < 1, by assuming that there are already
P, threads in the retry loop, and that a new thread attempts to CAS
during the retry, within a probability h:

v
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dt

riw™®
d(t
e(P,/+h):e(P,,)+h></ ((3)
0 riw

rc+cw—cc rc+cw
:eumy+(/ dU)dr+/ ) 4
0

I‘/W(+) rc+cw—cc I’/W(+)

re+cw+e(Py) Aw*)
+/ Aﬂgm+/ Aﬂﬂmﬁ

re+cw r/W( ) rc+cw+e(Py) fIW(+)
rc+cw ¢ re+cw+e(Py) cc
:e(P,/)+(/ — dt+/ ﬁdt)h
rc+cw—cc riw rc+cw rlw
CC2
5 Pr) x
e (Py) 4 hx 28 +’) <.
rw)
Pi+h) —e(Py) % +e(Py)x
This leads to e(Pnth)—e(Pn) _ 5 e (Pn) “  When making
h rAw )
h tend to 0, we finally obtain &' (Py) = cc x ﬁ%.
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Expansion Model
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Slack Time

» Input: P, threads already in the retry loop
» Assume a thread has equal probability to be anywhere in the critical
work or expansion
P threads

rr v

> Expectation of the minimum distance to Access (failed CAS)

st (Py) = (cw + e (Pn))/(Py +1) 3)
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Unified Solving for Throughput Estimate

» Unified solving:

Py+2 —
reravtee Tt l oy e (Py)) + 2, (4)
Prl 'Drl +1
The system switches from being non-contended to being contended
5 _ pl0)
at Py = P,”, where

cc+cw —rc (\/1+4(rc—|—cw+cc)(cw+2cc) _1>.

2(ew + 2cc) (cc+ cw — rc)?

0
Pr(l):

» Fixed point iteration on P, to find the value that obeys Little's Law
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Special Case (Constant parallel work)
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(f)-Cyclic Executions

» Periodic: every thread is in the same state as one period before — parallel work
> Shortest period contains exactly 1 successful attempt and — successful retry|
exactly f fails per thread — failed retry
\\ idle thread
Past Present Future
— | —
To
T
T2
T3
System - —

SITE3
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Inevitable and Wasted Failures
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Throughput: Combining Impacting Factors

> Input: P, (Average number of threads inside retry loop)

1. Calculate expansion: e (Py)
2. Compute amount of work in a retry:
Retry = Read + Critical_Work + e (Py) + CAS
3. Estimate number of logical conflicts:
LogicalConflicts(Retry, Parallel _Work, Threads)

~~ Average number of threads inside the retry loop
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Throughput: Combining Impacting Factors

> Input: P, (Average number of threads inside retry loop)

1. Calculate expansion: e (Py)
2. Compute amount of work in a retry:
Retry = Read + Critical_Work + e (Py) + CAS
3. Estimate number of logical conflicts:
LogicalConflicts(Retry, Parallel _Work, Threads)

~~ Average number of threads inside the retry loop

» Convergence via fixed point iteration
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Special Case (Parallel work follows
exponential distribution)
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Special Case: Constructive Approach

» Construct the execution step by step (based on Markov Chains)

» P, renders the state of the system. System is in state i, if there are
i threads inside the retry loop, and the system changes state after
success CAS.

» In state i/, we know that there are P — j threads in the parallel work

> Parallel work follows exponential distribution (memoryless), we do
not need to track P — j threads in the parallel work

» Transition probabilities (state i to i + k): estimate the success
period given that we are in state i then consider the probability of
k + 1 threads to leave the parallel work and enter to the retry loop
during this interval

» Calculate stationary distribution and stochastic sequence of success
periods results in the throughput estimate
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Results

Performance of Lock-free Data Structures: Models and Analyses 23|33 Philippas Tsigas



Synthetic Tests Results

Case == Low == High == Average == Real

cw = 50, threads = 8 cw = 200, threads = 8
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Treiber Stack - Pop Results

Case == Low == High == Average == Real Case == Low == High == Average == Real
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Synthetic tests Results

Metric = Throughput = - Failures
Case == Average == Bound == Constructive == Real Constant == Real Poisson

—— 1.0e+07- =

1e+07- 7.5e+06-

S 0.0e+00-

0 30 60 90 120

o

@

+

o

o
|

N

)

T

o

>
\

Throughput (ops/sec), Failures (micro)

0e+00- e
00 400

0 50 100 15

Performance of Lock-free Data Structures: Models and Analyses 26|33 Philippas Tsigas



MS Queue - Enqueue Results

Metric == Throughput = Failures Case == Average == Bound == Real
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Applications
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Back-off: Treiber Stack Pop

» Our Back-off vs. Exponential and Linear Back-off

Applications
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Back-off Applications

» Delaunay Triangulation (pw is known): back-off for the time
difference between the peak pw (computed by our analysis) and the
actual pw

» Workload originated from global operators of exchanges for financial
markets (pw is unknown): estimate the pw value from the number
of fails with a sliding window

Back-off on Trade Agg. Back-off on Delaunay Tri.
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Memory Management Applications

» Memory management introduces extra work

» Traditionally, a big block of work that is executed once in a while,
after reaching a threshold for the number of object waiting for
reclamation

» Twist:

Split this big block into equally sized smaller chunks
Track the number of fails to determine contention
No MM execution under low contention

Call MM (as back-off) only under high contention

vy vy VvVYy
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Conclusion

> Three new analyses for the performance of lock-free data structures

» Validate our model using synthetic tests and several reference data
structures (deque, queue, stack, shared counter, priority queue)

» Exploit our analyses for back-off and memory management
optimization

» For details, please see [1] and [2]
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