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MotivationPp Pp

I Lock-free Data Structures:
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I Provide high scalability
I Existing analyses focus on asymptotic behavior

I Framework to estimate the performance:
I Facilitate efficient lock-free designs
I Compare lock-free implementations
I Facilitate analytically data structure implementation optimizations

(i.e. back-off, memory management)
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ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)
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Example: Treiber Stack Pop operationPp Pp

cw = 50, threads = 8
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Executions Under Different ContentionPp Pp

parallel work

successful retry

failed retry

Parallel work
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Impacting FactorsPp Pp

I Failed Retries

I Atomic CAS Conflicts

CAS
Expansion
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AnalysesPp Pp

I General case: parallel work follows an arbitrary distribution
I Special case 1: parallel work is a constant
I Special case 2: parallel work follows exponential distribution
I The analyses are centered around a single variable Prl , the number

threads inside the retry loop
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General Case
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Analyses: Breakdown of the executionPp Pp

successful
CAS

Gap Access cw expansion successful
CAS

slack time completion time

success period (sp)

I Slack time: the gaps in between successful retry loops (a successful
retry does not start immediately after the previous successful one,
See System perspective in the previous figures)

I Completion time: the time from the beginning of a retry loop to its
end

I Expected success period = Expected Completion time + Expected
Slack time

I Throughput = 1 / Expected success period
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General Case: Average-Based ApproachPp Pp

I Throughput: expectation of success period at a random time
I Relies on queueing theory (Little’s law) and focus on average

behaviour
sp
(
Prl
)

= pw/(P − Prl) (1)
I Assuming two modes of contention:

I Non-contended:

sp
(
Prl
)

= (rc + cw + cc + pw)/P = (rc + cw + cc)/Prl (2)

I Contended:
(i) Given Prl , calculate the expected expansion: e

(
Prl
)

(ii) Given Prl , calculate the expected slack time: st
(
Prl
)
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CAS ExpansionPp Pp
I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during CompletionTime

(Access + cw + e
(
Prl
)
+ CAS), within a probability h:

I Cost function:

  rc+cw-cc

cc

cost(t)

t
rc+cw
+exp

rc+cw rc+cw+
exp+cc

Access & Critical Work
Previously

expanded CASExpansion

CAS

 e
(
Prl + h

)
= e

(
Prl
)

+ h ×
∫ CompletionTime

0

cost(t)
CompletionTime dt.
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Lemma
The expansion of a CAS operation is the solution of the following system
of equations: e′ (Prl) = cc ×

cc
2 + e (Prl)

rc + cw + cc + e (Prl)
e
(

P(0)
rl

)
= 0

We compute e (Prl + h), where h ≤ 1, by assuming that there are already
Prl threads in the retry loop, and that a new thread attempts to CAS
during the retry, within a probability h:
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e (Prl + h) = e (Prl) + h ×
∫ rlw (+)

0

d (t)
rlw (+) dt

= e (Prl) +
(∫ rc+cw−cc

0

d (t)
rlw (+) dt +

∫ rc+cw

rc+cw−cc

d (t)
rlw (+) dt

+
∫ rc+cw+e(Prl )

rc+cw

d (t)
rlw (+) dt +

∫ rlw (+)

rc+cw+e(Prl )

d (t)
rlw (+) dt

)
h

= e (Prl) +
(∫ rc+cw

rc+cw−cc

t
rlw (+) dt +

∫ rc+cw+e(Prl )

rc+cw

cc
rlw (+) dt

)
h

= e (Prl) + h ×
cc2

2 + e (Prl) × cc
rlw (+) .

This leads to e (Prl + h) − e (Prl)
h =

cc2

2 + e (Prl) × cc
rlw (+) . When making

h tend to 0, we finally obtain e′ (Prl) = cc ×
cc
2 +e(Prl )

rc+cw+cc+e(Prl ) .
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Expansion ModelPp Pp
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Slack TimePp Pp

I Input: Prl threads already in the retry loop
I Assume a thread has equal probability to be anywhere in the critical

work or expansion

Access cw e
(
Prl
)

CAS

Prl threads

I Expectation of the minimum distance to Access (failed CAS)

st
(
Prl
)

= (cw + e
(
Prl
)
)/(Prl + 1) (3)
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Unified Solving for Throughput EstimatePp Pp

I Unified solving:

rc + cw + cc
Prl

= Prl + 2
Prl + 1

(
cw + e

(
Prl
))

+ 2cc, (4)

The system switches from being non-contended to being contended
at Prl = P(0)

rl , where

P(0)
rl = cc + cw − rc

2(cw + 2cc)

(√
1 + 4(rc + cw + cc)(cw + 2cc)

(cc + cw − rc)2 − 1
)

.

I Fixed point iteration on Prl to find the value that obeys Little’s Law
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Special Case (Constant parallel work)
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(f )-Cyclic ExecutionsPp Pp

I Periodic: every thread is in the same state as one period before
I Shortest period contains exactly 1 successful attempt and

exactly f fails per thread
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Inevitable and Wasted FailuresPp Pp
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Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 20 33



Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 20 33



Special Case (Parallel work follows
exponential distribution)
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Special Case: Constructive ApproachPp Pp

I Construct the execution step by step (based on Markov Chains)
I Prl renders the state of the system. System is in state i , if there are

i threads inside the retry loop, and the system changes state after
success CAS.

I In state i , we know that there are P − i threads in the parallel work
I Parallel work follows exponential distribution (memoryless), we do

not need to track P − i threads in the parallel work
I Transition probabilities (state i to i + k): estimate the success

period given that we are in state i then consider the probability of
k + 1 threads to leave the parallel work and enter to the retry loop
during this interval

I Calculate stationary distribution and stochastic sequence of success
periods results in the throughput estimate
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Results
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Synthetic TestsPp Pp Results
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Treiber Stack - PopPp Pp Results
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Synthetic testsPp Pp Results
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MS Queue - EnqueuePp Pp Results
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Applications
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Back-off: Treiber Stack PopPp Pp Applications

I Our Back-off vs. Exponential and Linear Back-off
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Back-offPp Pp Applications

I Delaunay Triangulation (pw is known): back-off for the time
difference between the peak pw (computed by our analysis) and the
actual pw

I Workload originated from global operators of exchanges for financial
markets (pw is unknown): estimate the pw value from the number
of fails with a sliding window
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Memory ManagementPp Pp Applications

I Memory management introduces extra work

I Traditionally, a big block of work that is executed once in a while,
after reaching a threshold for the number of object waiting for
reclamation

I Twist:
I Split this big block into equally sized smaller chunks
I Track the number of fails to determine contention
I No MM execution under low contention
I Call MM (as back-off) only under high contention
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ConclusionPp Pp

I Three new analyses for the performance of lock-free data structures

I Validate our model using synthetic tests and several reference data
structures (deque, queue, stack, shared counter, priority queue)

I Exploit our analyses for back-off and memory management
optimization

I For details, please see [1] and [2]
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