
Performance of Lock-free Data
Structures: Models and Analyses

Philippas Tsigas

Chalmers University of Technology

qwwe

MotivationPp Pp

I Lock-free Data Structures:
I Limitations of their lock-based counterparts: deadlocks, convoying

and programming flexibility
I Provide high scalability
I Existing analyses focus on asymptotic behavior

I Framework to estimate the performance:
I Facilitate efficient lock-free designs
I Compare lock-free implementations
I Facilitate analytically data structure implementation optimizations

(i.e. back-off, memory management)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 2 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

ModelPp Pp

Output of the analysis: Data structure throughput, i.e. number of
successful operations per unit of time

Procedure AbstractAlgorithm
1 Initialization();
2 while ! done do
3 Parallel_Work(); /* Application specific code, conflict-free */
4 while ! success do
5 current ← Read(AP);
6 new ← Critical_Work(current);
7 success ← CAS(AP, current, new);

Inputs of the analysis:
I Platform parameters: CAS (cc) and Read (rc) latencies, in clock

cycles
I Algorithm parameters:

I Critical Work (cw) and Parallel Work (pw) latencies, in clock cycles
I Total number of threads(P)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 3 33

Example: Treiber Stack Pop operationPp Pp

cw = 50, threads = 8

4000

6000

8000

10000

12000

0 2000 4000 6000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Constant Exponential Poisson

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 4 33

Executions Under Different ContentionPp Pp

parallel work

successful retry

failed retry

Parallel work

Data Structure Throughput

T0

T1

T2

T3

System

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 5 33

Executions Under Different ContentionPp Pp parallel work

successful retry

failed retry

Parallel work

Data Structure Throughput

T0

T1

T2

T3

System

Low contention

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 5 33

Executions Under Different ContentionPp Pp parallel work

successful retry

failed retry

Parallel work

Data Structure Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

Peak performance

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 5 33

Executions Under Different ContentionPp Pp parallel work

successful retry

failed retry

Parallel work

Data Structure Throughput

T0

T1

T2

T3

System

T0

T1

T2

T3

System

High contention

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 5 33

Impacting FactorsPp Pp

I Failed Retries

I Atomic CAS Conflicts

CAS
Expansion

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 6 33

AnalysesPp Pp

I General case: parallel work follows an arbitrary distribution
I Special case 1: parallel work is a constant
I Special case 2: parallel work follows exponential distribution
I The analyses are centered around a single variable Prl , the number

threads inside the retry loop

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 7 33

General Case

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 8 33

Analyses: Breakdown of the executionPp Pp

successful
CAS

Gap Access cw expansion successful
CAS

slack time completion time

success period (sp)

I Slack time: the gaps in between successful retry loops (a successful
retry does not start immediately after the previous successful one,
See System perspective in the previous figures)

I Completion time: the time from the beginning of a retry loop to its
end

I Expected success period = Expected Completion time + Expected
Slack time

I Throughput = 1 / Expected success period

T0

T1

T2

T3

System

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 9 33

Analyses: Breakdown of the executionPp Pp

successful
CAS

Gap Access cw expansion successful
CAS

slack time completion time

success period (sp)

T0

T1

T2

T3

System

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 9 33

General Case: Average-Based ApproachPp Pp

I Throughput: expectation of success period at a random time
I Relies on queueing theory (Little’s law) and focus on average

behaviour
sp
(
Prl
)

= pw/(P − Prl) (1)
I Assuming two modes of contention:

I Non-contended:

sp
(
Prl
)

= (rc + cw + cc + pw)/P = (rc + cw + cc)/Prl (2)

I Contended:
(i) Given Prl , calculate the expected expansion: e

(
Prl
)

(ii) Given Prl , calculate the expected slack time: st
(
Prl
)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 10 33

CAS ExpansionPp Pp
I Input: Prl threads already in the retry loop
I A new thread attempts to CAS during CompletionTime

(Access + cw + e
(
Prl
)
+ CAS), within a probability h:

I Cost function:

 rc+cw-cc

cc

cost(t)

t
rc+cw
+exp

rc+cw rc+cw+
exp+cc

Access & Critical Work
Previously

expanded CASExpansion

CAS

 e
(
Prl + h

)
= e

(
Prl
)

+ h ×
∫ CompletionTime

0

cost(t)
CompletionTime dt.

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 11 33

Lemma
The expansion of a CAS operation is the solution of the following system
of equations: e′ (Prl) = cc ×

cc
2 + e (Prl)

rc + cw + cc + e (Prl)
e
(

P(0)
rl

)
= 0

We compute e (Prl + h), where h ≤ 1, by assuming that there are already
Prl threads in the retry loop, and that a new thread attempts to CAS
during the retry, within a probability h:

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 12 33

e (Prl + h) = e (Prl) + h ×
∫ rlw (+)

0

d (t)
rlw (+) dt

= e (Prl) +
(∫ rc+cw−cc

0

d (t)
rlw (+) dt +

∫ rc+cw

rc+cw−cc

d (t)
rlw (+) dt

+
∫ rc+cw+e(Prl)

rc+cw

d (t)
rlw (+) dt +

∫ rlw (+)

rc+cw+e(Prl)

d (t)
rlw (+) dt

)
h

= e (Prl) +
(∫ rc+cw

rc+cw−cc

t
rlw (+) dt +

∫ rc+cw+e(Prl)

rc+cw

cc
rlw (+) dt

)
h

= e (Prl) + h ×
cc2

2 + e (Prl) × cc
rlw (+) .

This leads to e (Prl + h) − e (Prl)
h =

cc2

2 + e (Prl) × cc
rlw (+) . When making

h tend to 0, we finally obtain e′ (Prl) = cc ×
cc
2 +e(Prl)

rc+cw+cc+e(Prl) .

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 13 33

Expansion ModelPp Pp

0

2

4

6

0 2 4 6 8
Threads in Retry Loop

E
xp

an
si

on
 (

un
its

 o
f w

or
k)

cw 1 3 12 20

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 14 33

Slack TimePp Pp

I Input: Prl threads already in the retry loop
I Assume a thread has equal probability to be anywhere in the critical

work or expansion

Access cw e
(
Prl
)

CAS

Prl threads

I Expectation of the minimum distance to Access (failed CAS)

st
(
Prl
)

= (cw + e
(
Prl
)
)/(Prl + 1) (3)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 15 33

Unified Solving for Throughput EstimatePp Pp

I Unified solving:

rc + cw + cc
Prl

= Prl + 2
Prl + 1

(
cw + e

(
Prl
))

+ 2cc, (4)

The system switches from being non-contended to being contended
at Prl = P(0)

rl , where

P(0)
rl = cc + cw − rc

2(cw + 2cc)

(√
1 + 4(rc + cw + cc)(cw + 2cc)

(cc + cw − rc)2 − 1
)

.

I Fixed point iteration on Prl to find the value that obeys Little’s Law

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 16 33

Special Case (Constant parallel work)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 17 33

(f)-Cyclic ExecutionsPp Pp

I Periodic: every thread is in the same state as one period before
I Shortest period contains exactly 1 successful attempt and

exactly f fails per thread

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 18 33

Inevitable and Wasted FailuresPp Pp
T0

T1

T2

T3

System

vs.

T0

T1

T2

T3

System

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 19 33

Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 20 33

Throughput: Combining Impacting FactorsPp Pp

I Input: Prl (Average number of threads inside retry loop)
1. Calculate expansion: e (Prl)

2. Compute amount of work in a retry:

Retry = Read + Critical_Work + e (Prl) + CAS

3. Estimate number of logical conflicts:

LogicalConflicts(Retry ,Parallel_Work,Threads)

 Average number of threads inside the retry loop

I Convergence via fixed point iteration

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 20 33

Special Case (Parallel work follows
exponential distribution)

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 21 33

Special Case: Constructive ApproachPp Pp

I Construct the execution step by step (based on Markov Chains)
I Prl renders the state of the system. System is in state i , if there are

i threads inside the retry loop, and the system changes state after
success CAS.

I In state i , we know that there are P − i threads in the parallel work
I Parallel work follows exponential distribution (memoryless), we do

not need to track P − i threads in the parallel work
I Transition probabilities (state i to i + k): estimate the success

period given that we are in state i then consider the probability of
k + 1 threads to leave the parallel work and enter to the retry loop
during this interval

I Calculate stationary distribution and stochastic sequence of success
periods results in the throughput estimate

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 22 33

Results

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 23 33

Synthetic TestsPp Pp Results

cw = 50, threads = 8 cw = 200, threads = 8

cw = 600, threads = 8 cw = 1600, threads = 8

4000

6000

8000

10000

12000

4000

6000

8000

2000

3000

4000

1000

1500

0 2000 4000 6000 0 2500 5000 7500 10000

0 5000 10000 15000 20000 0 10000 20000 30000 40000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 24 33

Treiber Stack - PopPp Pp Results

cw = 50, threads = 6

cw = 1500, threads = 6

4000

6000

8000

10000

12000

1000

1500

2000

0 1000 2000 3000 4000

0 10000 20000 30000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)
Case Low High Average Real

cw = 50, threads = 8

cw = 1500, threads = 8

4000

6000

8000

10000

12000

1000

1500

2000

0 2000 4000 6000

0 10000 20000 30000 40000
Parallel Work (cycles)

T
hr

ou
gh

pu
t (

op
s/

m
se

c)

Case Low High Average Real

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 25 33

Synthetic testsPp Pp Results

cw = 1 cw = 3

cw = 6 cw = 20

0e+00

5e+06

1e+07

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0 30 60 90 120 0 50 100 150

0 50 100 150 200 0 200 400
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)
Metric Throughput Failures

Case Average Bound Constructive Real Constant Real Poisson

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 26 33

MS Queue - EnqueuePp Pp Results

No MM With MM

0

2500000

5000000

7500000

0e+00

2e+06

4e+06

6e+06

8e+06

0 100 200 300 0 100 200 300
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

, F
ai

lu
re

s
(m

ic
ro

)

Metric Throughput Failures Case Average Bound Real

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 27 33

Applications

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 28 33

Back-off: Treiber Stack PopPp Pp Applications

I Our Back-off vs. Exponential and Linear Back-off

4e+06

6e+06

8e+06

1e+07

0 50 100
Parallel Work (units of work)

T
hr

ou
gh

pu
t (

op
s/

se
c)

Value 0 2 8 Type Exp. Linear None Ours

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 29 33

Back-offPp Pp Applications

I Delaunay Triangulation (pw is known): back-off for the time
difference between the peak pw (computed by our analysis) and the
actual pw

I Workload originated from global operators of exchanges for financial
markets (pw is unknown): estimate the pw value from the number
of fails with a sliding window

4 threads 6 threads 8 threads

0.9

1.0

1.1

1.2

1.3

1.4

s3 s6 s50 s3 s6 s50 s3 s6 s50
Dataset

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Back−off on Trade Agg.
4 threads 6 threads 8 threads

0.80

0.85

0.90

0.95

1.00

bike r1 r2 bike r1 r2 bike r1 r2
Dataset

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Back−off on Delaunay Tri.

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 30 33

Memory ManagementPp Pp Applications

I Memory management introduces extra work

I Traditionally, a big block of work that is executed once in a while,
after reaching a threshold for the number of object waiting for
reclamation

I Twist:
I Split this big block into equally sized smaller chunks
I Track the number of fails to determine contention
I No MM execution under low contention
I Call MM (as back-off) only under high contention

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 31 33

ConclusionPp Pp

I Three new analyses for the performance of lock-free data structures

I Validate our model using synthetic tests and several reference data
structures (deque, queue, stack, shared counter, priority queue)

I Exploit our analyses for back-off and memory management
optimization

I For details, please see [1] and [2]

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 32 33

ReferencesPp Pp

[1] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas. “Analyzing
the Performance of Lock-Free Data Structures: A Conflict-Based
Model”. In: Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015,
Proceedings. 2015, pp. 341–355. url:
https://doi.org/10.1007/978-3-662-48653-5_23.

[2] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas. “How
Lock-free Data Structures Perform in Dynamic Environments:
Models and Analyses”. In: 20th International Conference on
Principles of Distributed Systems, OPODIS 2016, December 13-16,
2016, Madrid, Spain. 2016, 23:1–23:17. url:
https://doi.org/10.4230/LIPIcs.OPODIS.2016.23.

Philippas TsigasPerformance of Lock-free Data Structures: Models and Analyses 33 33

https://doi.org/10.1007/978-3-662-48653-5_23
https://doi.org/10.4230/LIPIcs.OPODIS.2016.23

	Results
	Applications

	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

