
SELECTED TOPICS IN COHERENCE
AND CONSISTENCY

Michel Dubois

Ming-Hsieh Department of Electrical Engineering

University of Southern California
Los Angeles, CA90089-2562

dubois@usc.edu

UPMARC Summer School 2018

INTRODUCTION

• IN CHIP MULTIPROCESSORS (CMPs) CPUs (cores) SHARE SOME
MEMORY

• COMMUNICATION IS IMPLICIT THROUGH LOADS AND STORES
SHARED MEMORY IS A COMMUNICATION MECHANISM

NO HYPOTHESIS ON THE RELATIVE SPEED OF PROCESSORS

UPMARC Summer School 2018

INTRODUCTION
CACHING

• CACHES ARE NECESSARY TO MAINTAIN THE HIGH EXECUTION
RATE OF CORES

• MANY COPIES OF THE SAME ADDRESS (IN CACHES OR IN
OTHER BUFFERS) MAY BE PRESENT AT ANY TIME

THESE COPIES MUST GIVE THE ILLUSION OF BEING COHERENT
(I.E., EQUIVALENT TO A SINGLE COPY)

• COHERENCE IS TRIVIALLY ENFORCED WHEN THERE IS A
SINGLE COPY

• COHERENCE IS ALSO TRIVIALLY ENFORCED WHEN MULTIPLE
COPIES OF THE SAME ADDRESS ARE ALWAYS THE SAME

UPMARC Summer School 2018

INTRODUCTION

MEMORY CONSISTENCY MODEL(MCM)

“THE ORDER IN WHICH ACCESSES (TO ALL ADDRESSES) BY ONE THREAD
ARE OBSERVED BY OTHER THREADS”

MUCH TOUGHER THAN COHERENCE

• CONSIDER THE FOLLOWING CODE:
ASSUME A AND flag ARE BOTH 0 INITIALLY

P1 P2
... ...
A:=1; while(flag==0)do nothing;
flag:=1; print A;
... ...

• ONE WOULD ASSUME THAT THE VALUE 1 IS PRINTED BY P2

• HOWEVER THIS MAY NOT ALWAYS BE THE CASE

COHERENCE DOES NOT DO THAT

UPMARC Summer School 2018

MEMORY CONSISTENCY MODEL
<=>

PROCESSOR ARCHITECTURE +
MEMORY ARCHITECTURE
Design each independently

UPMARC Summer School 2018

INTRODUCTION

CONTENT

1.PIPELINES
2.SYNCHRONIZATION
3.STORE ATOMICITY
4.SEQUENTIAL CONSISTENCY
5.RELAXED MEMORY CONSISTENCY MODELS
6.SPECULATIVE VIOLATIONS OF MEMORY CONSISTENCY

MODELS
7.QUESTION: DO WE REALLY NEED COHERENCE?
8.OTHER TOPICS

UPMARC Summer School 2018

1. PIPELINES

UPMARC Summer School 2018

5-STAGE PIPELINE

• MEMORY ACCESSES (LOADS AND STORES) ARE BLOCKING AND
EXECUTE ONE BY ONE IN PROCESS ORDER IN THE MEMORY STAGE

• NO MEMORY HAZARDS
• NO PROBLEM FROM THE PROCESSOR SIDE

NO MEMORY HAZARD

UPMARC Summer School 2018

5-STAGE PIPELINE WITH STORE BUFFER

HERE, LOADS ARE BLOCKING BUT STORES ARE NOT

LOADS AND STORES REACH THE CACHE OUT OF PROCESS
ORDER

 MEMORY HAZARDS ARE POSSIBLE

VALUES MAY OR MAY NOT BE FORWARDED FROM SB

UPMARC Summer School 2018

Out-of-Order EXECUTION

UPMARC Summer School 2018

INSTRUCTIONS ARE
DISPATCHED IN
ORDER

THEY EXECUTE OUT
OF ORDER

THEY COMMIT THEIR
RESULTS IN ORDER

STORES EXECUTE
WHEN THEY ARE AT
THE TOP OF ROB

LOADS EXECUTE
SPECULATIVELY

2. SYNCHRONIZATION

UPMARC Summer School 2018

SHARED-MEMORY COMMUNICATION

• IMPLICITELY VIA MEMORY

• PROCESSORS SHARE SOME MEMORY
• COMMUNICATION IS IMPLICIT THROUGH LOADS AND

STORES

UPMARC Summer School 2018

SYNCHRONIZATION

THE THREE FORMS OF SYNCHRONIZATION:

1. MUTUAL EXCLUSION

2. BARRIER SYNCHRONIZATION

3. POINT-TO-POINT SYNCHRONIZATION

UPMARC Summer School 2018

MUTUAL EXCLUSION

• NEED FOR “MUTUAL EXCLUSION”
• ASSUME THE FOLLOWING STATEMENTS ARE EXECUTED BY 2 THREADS, T1 AND T2

T1 T2
A<- A+1 A<- A+1

• THE PROGRAMMER’S EXPECTATION IS THAT, WHATEVER THE ORDER OF EXECUTION OF THE
TWO STATEMENTS, THE FINAL RESULT WILL BE THAT A IS INCREMENTED BY 2

• HOWEVER PROGRAM STATEMENTS ARE NOT EXECUTED IN AN ATOMIC FASHION.
• COMPILED CODE ON A RISC MACHINE WILL INCLUDE SEVERAL INSTRUCTIONS
• A POSSIBLE TEMPORAL INTERLEAVING IS:

T1 T2
r1 <- A

r1 <- A
r1 <- r1 + 1

r1 <- r1 + 1
A <- r1

A <- r1

• IN THE END A IS INCREMENTED BY 1 (NOT 2 AS EXPECTED)

UPMARC Summer School 2018

MUTUAL EXCLUSION
MAKE PROGRAM STATEMENT EXECUTION ATOMIC

• CRITICAL SECTIONS
• PROVIDED BY LOCK (ACQUIRE) AND UNLOCK (RELEASE) PRIMITIVES FRAMING THE STATEMENT(S)
• MODIFICATIONS ARE “RELEASED” ATOMICALLY AT THE END OF THE CRITICAL SECTION

• SO THE CODE SHOULD BE:
T1 T2
lock(La) lock(La) /acquire
A<- A+1 A<- A+1
unlock(La) unlock(La) /release

HONOR SYSTEM

DEKKER’S ALGORITHMS FOR LOCKING
• ASSUME A AND B ARE BOTH 0 INITIALLY

T1 T2
A:=1 B:=1
while(B==1); /acquire while(A==1);
<critical section> <critical section>
A:=0 release B:=0

• AT MOST ONE PROCESS CAN BE IN THE CRITICAL SECTION AT ANY ONE TIME.
• DEADLOCK IS POSSIBLE
• COMPLEX (TO SOLVE DEADLOCK AND TO SYNCHRONIZE MORE THAN 2 THREADS)

UPMARC Summer School 2018

BARRIER SYNCHRONIZATION

GLOBAL SYNCHRONIZATION AMONG ALL THREADS

ALL THREADS MUST REACH THE BARRIER BEFORE ANY THREAD IS ALLOWED TO EXECUTE BEYOND THE
BARRIER

P1 P2
... ...
BAR := BAR+1; BAR := BAR +1;

while (BAR < 2); while (BAR < 2);

NOTE: NEED A CRITICAL SECTION TO INCREMENT BAR

UPMARC Summer School 2018

POINT-TO-POINT SYNCHRONIZATION

SIGNALS THAT A VALUE IS AVAILABLE

T1 T2
A = 1;
FLAG = 1;

while (FLAG==0);
print A

SIGNAL SENT BY T1 TO T2 THROUGH FLAG (PRODUCER/CONSUMER SYNCHRONIZATION)

UPMARC Summer School 2018

SYNCHRONIZATION

• USE NEW MEMORY INSTRUCTIONS
• TEST AND SET
• RESET

Lock: T&S R1, lock
BNEZ R1, Lock
RET

Unlock: SW R0, lock
RET

• LOAD LINK
• STORE CONDITIONAL

T&S: ADDI R1,R0,1
LL Rx,lock
SC R1,lock
BEQZ R1, T&S
RET

UPMARC Summer School 2018

EXAMPLE

• IN 1ST PHASE ACCESSES TO Xs ARE MUTUALLY EXCLUSIVE
• IN 2ND PHASE, MULTIPLE ACCESSES TO Xs (READ-ONLY)
• OPPOSITE IS TRUE FOR Ys

UPMARC Summer School 2018

3. STORE ATOMICITY

UPMARC Summer School 2018

MEMORY COHERENCE: WHAT’S THE PROBLEM

UPMARC Summer School 2018

COHERENCE: WHY IT IS SO HARD

• AFTER EVENT 3, THE CACHES CONTAIN DIFFERENT COPIES. IS THIS STILL
COHERENT?

• THE ANSWER IS “YES”, FOR AS LONG AS P1 OR P2 DO NOT EXECUTE THEIR LOADs
• A SYSTEM REMAINS COHERENT FOR AS LONG AS INCOHERENCE IS NOT DETECTED.

OTHERWISE SAME RESULT.

• CAN THE LOADs IN EVENTS 4 AND 5 RETURN 0 OR 1? COHERENT?
• YES, EITHER COULD STILL BE “COHERENT” (DEPENDING ON THE DEFINITION)

• BECAUSE SOFTWARE CANNOT DETECT THE DIFFERENCE
• P1 OR P2 COULD HAVE RUN SLIGHTLY FASTER, SO THAT EVENTS 4 OR 5 OCCUR BEFORE EVENT 3 IN

TIME.

• IN PRACTICE, MUCH MORE COMPLEX BECAUSE MEMORY EVENTS ARE
NOT ATOMIC AND DO SOMETIMES OVERLAP IN TIME

• FOR EXAMPLE, EVENTS 3, 4, AND 5 MAY BE TRIGGERED IN THE SAME CLOCK CYCLE
• THEY CONFLICT IN SOME PARTS OF THE HARDWARE WHERE THEY ARE SERIALIZED
• HOWEVER, THEY CAN PROCEED INDEPENDENTLY IN PARALLEL (TEMPORAL OVERLAP)

ON THEIR OWN HARDWARE PATHS

UPMARC Summer School 2018

STRICT COHERENCE

• “A memory system is coherent if the value returned on a Load is
always the value given by the latest Store with the same address”
• SAME DEFINITION AS FOR UNIPROCESSORS

• DIFFICULT TO EXTEND AS SUCH TO MULTIPROCESSORS
• ORDER WITHIN EACH THREAD. NO ORDER BETWEEN THREADS.

• CAN BE APPLIED IF
• MEMORY ACCESSES DO NOT OVERLAP IN TIME

• TIME ORDER
• WON’T HAPPEN ALL THE TIME

• STORES ARE ATOMIC SO THAT ALL COPIES ARE UPDATED
INSTANTANEOUSLY (STORE ATOMICITY)

• STORE/LOAD ORDERS ARE ENFORCED BY ACCESSES TO OTHER
MEMORY LOCATIONS (E.G., SYNCHRONIZATION PRIMITIVES)

UPMARC Summer School 2018

NOTATIONS

UPMARC Summer School 2018

PROTOCOL MACHINE: MSI INVALIDATE PROTOCOL

THE PROTOCOL MACHINES FOR PROTOCOL SPECIFICATION ASSUMES
THAT EVENTS ARE ATOMIC (HAPPEN INSTANTANEOUSLY)

• BLOCK STATES:
• Invalid (I); same as Not Present (NP)
• Shared (S): one copy or more, memory is clean;
• Dirty (D) or Modified (M): one copy, memory is stale

• PROCESSOR REQUESTS
• PrRd or PrWr

• BUS TRANSACTIONS
• BusRd: requests copy with no intent to modify
• BusRdX: requests copy with intent to modify
• Flush: forwards block copy to requester

M S I(NP)
PrWr/--
PrRd/--

BusRd/Flush

BusRdX/Flush

PrRd/--
BudRd/--

BusRdX/--

PrWr/BusRdX

BusRd/--

BusRdX/--

PrRd/BusRd

PrWr/BusRdX

UPMARC Summer School 2018

ATOMIC MEMORY ACCESSES

• Strict coherence is applicable if all memory accesses are atomic or do not overlap in time

CLK T1: T2: Comments
t1: S1(A)a1 Data not in C2 and dirty in C1
t2: L1(A)a1
t3: S1(A)a2
t4: L1(A)a2
t5: ---------------------------- L2(A)a2----------- APT: Read Miss in C2;
t6: L1(A)a2 A becomes Shared in C1 and C2;

both threads can read A= a2;
No one can write

t7: L2(A)a2
t8: L1(A)a2

t9: ----------------------------S2(A)a3-------- APT:C1 is invalidated
t10: L2(A)a3 and C2 becomes Dirty
t11: S1(A)a4-------------------------------- APT:Store miss in C1; C2 is invalidated
t13: S1(A)a5

UPMARC Summer School 2018

MEMORY ACCESS ATOMICITY

• A long time ago, processors were not pipelined, were connected by a single, circuit-switched
bus, no store buffer

• On a coherence transaction, processor blocks, cache gets access to the bus and complete
the transaction in remote caches and memory atomically

• COHERENCE TRANSACTIONS DO NOT OVERLAP IN TIME
• THUS THE PROTOCOL WORKS EXACTLY AS ITS PROTOCOL MACHINE

THE COHERENCE TRANSACTION IS PERFORMED ATOMICALLY WHEN THE BUS IS
RELEASED

Today we must deal with non-atomic transactions

UPMARC Summer School 2018

MEMORY ACCESS ATOMICITY--SUFFICIENT CONDITION

• COHERENCE TRANSACTIONS CANNOT HAPPEN
INSTANTANEOUSLY
• MUST MAKE THEM LOOK ATOMIC TO THE SOFTWARE
• WELL-KNOWN PROBLEM: DATABASE SYSTEMS OR CRITICAL

SECTIONS

• CONDITION: MAKE SURE THAT ONLY ONE VALUE IS
ACCESSIBLE AT ANY ONE TIME

No thread can observe a new value while any thread can still observe the
old value

UPMARC Summer School 2018

DIRECTORY-BASED PROTOCOLS

BUSY BIT IS ADDED TO EACH DIRECTORY ENTRY
THE FUNCTION OF THE BUSY BIT IS TO LOCK THE DIRECTORY ENTRY

SO THAT THE DIRECTORY CAN MANAGE MULTIPLE TRANSACTIONS ON
DIFFERENT ADDRESSES AT THE SAME TIME

Busy bit

UPMARC Summer School 2018

cc-NUMA PROTOCOLS

PROTOCOL AGENTS:
• HOME NODE (H): NODE WHERE THE MEMORY BLOCK AND

ITS DIRECTORY ENTRY RESIDE
• LOCAL NODE (R): NODE MAKING THE REQUEST

(REQUESTER)
• REMOTE NODE

• DIRTY (D): NODE HOLDING THE LATEST, MODIFIED COPY
• SHARED (S) : NODE HOLDING A SHARED COPY

UPMARC Summer School 2018

MSI INVALIDATE PROTOCOL IN cc-NUMAs (4-LEG
PROTOCOL)

BASELINE DIRECTORY PROTOCOL HAS FOUR HOPS ON A REMOTE MISS.

UPMARC Summer School 2018

STORE ATOMICITY IN cc-NUMAs

WRITE MISS IN THREAD T0 IN A cc-NUMA WITH MSI INVALIDATE

UPMARC Summer School 2018

STORE ATOMICITY IN cc-NUMAs

• Threads must all observe the same value

• While a new value is propagated, no thread can read the new value
(including the writing thread) if other threads can still read the old
value

UPMARC Summer School 2018

STORE ATOMICITY AND MEMORY INTERLEAVING

• IN A STORE-ATOMIC MEMORY SYSTEM, ONLY ONE VALUE OF EACH
ADDRESS IS ACCESSIBLE BY THREADS AT ANY ONE TIME
• THIS IS THE SAME SITUATION AS INTERLEAVED MEMORIES

A STORE-ATOMIC MEMORY SYSTEM BEHAVES LIKE AN INTERLEAVED
MEMORY SYSTEM (TYPICAL SYSTEM WITH NO CACHE)

IT IS WELL-KNOWN THAT INTERLEAVED MEMORY SYSTEMS ARE
EQUIVALENT TO A MONOLITHIC (CENTRALIZED) MEMORY

UPMARC Summer School 2018

COHERENCE IS NOT SUFFICIENT

Point-to-point Synchronization
ASSUME A AND flag ARE BOTH 0 INITIALLY

P1 P2
... ...
A:=1; while (flag==0) do nothing;
flag:=1; print A;
... ...

Communication
ASSUME A AND B ARE BOTH 0 INITIALLY

P1 P2
... ...
A:=1; print B;
B:=2; print A;
... ...

Critical section
ASSUME A AND B ARE BOTH 0 INITIALLY

P1 P2
... ...
A:=1 B:=1
while(B==1) do nothing; while(A==1) do nothing;
<critical section> <critical section>
A:=0 B:=0

• PROGRAMMER’S INTUITION HERE IS THAT ACCESSES FROM DIFFERENT PROCESSORS ARE
“INTERLEAVED” IN PROCESS ORDER

SEQUENTIAL CONSISTENCY

UPMARC Summer School 2018

4. SEQUENTIAL CONSISTENCY

UPMARC Summer School 2018

FORMAL MODEL FOR SEQUENTIAL CONSISTENCY

• PROGRAM ORDER OF ALL THREADs IS RESPECTED AND ALL
MEMORY ACCESSES ARE ATOMIC BECAUSE OF THE MEMORY
CONTROLLER

• “A MULTIPROCESSOR IS SEQUENTIALLY CONSISTENT IF THE
RESULT OF ANY EXECUTION IS THE SAME AS IF THE MEMORY
OPERATIONS OF ALL THE PROCESSORS WERE EXECUTED IN
SOME SEQUENTIAL ORDER, AND THE OPERATIONS OF EACH
INDIVIDUAL PROCESSOR APPEAR IN THE SEQUENCE IN THE
ORDER SPECIFIED BY ITS PROGRAM”

UPMARC Summer School 2018

CONDITIONS FOR SC

• WE NEED TO FIND A COHERENT ORDER OF ALL
MEMORY ACCESSES IN WHICH ACCESSES OF EACH
THREAD ARE IN THREAD ORDER FOR EVERY
EXECUTION

• .

UPMARC Summer School 2018

ACCESS ORDERING RULES FOR SEQUENTIAL CONSISTENCY

• EXECUTION GRAPH HAS CYCLES  EXECUTION CANNOT BE
ORDERED

THIS CAN HAPPEN EVEN IF MEMORY IS STORE ATOMIC– THE BEST IT
CAN BE. HOW?

• IN A 5-STAGE PIPELINE WITH STORE BUFFERS
• THE TWO STORES ARE INSERTED IN THE STORE BUFFER OF EACH

PROCESSOR
• THE TWO LOADS BYPASS THE TWO STORES AND BOTH RETURN 0

CONCLUSION: WE MUST ALSO ADDRESS THE BEHAVIOR OF THE
PROCESSOR

UPMARC Summer School 2018

SEQUENTIAL CONSISTENCY
• LOOK AT MEMORY ACCESSES ORDERS THAT MUST BE OBSERVED (PERFORMED) GLOBALLY IN

THE WHOLE SYSTEM

• IN SC ALL ORDERS MUST BE ENFORCED
• ASSUME MEMORY STORES ARE ATOMIC
• WHAT DOES THIS MEAN FOR IN-ORDER PROCESSORS WITH STORE BUFFERS?

• LOADs ARE BLOCKING, SO LOAD-LOAD AND LOAD-STORE ORDERS ARE ENFORCED
• STOREs ARE NON-BLOCKING (THEY MOVE TO SB)
• STORE-LOAD: LOADs MUST BLOCK IN ME UNTIL SB IS EMPTY
• STORE-STORE: STOREs MUST BE EXECUTED ONE BY ONE FROM SB IN THE STORE ATOMIC

MEMORY SYSTEM

UPMARC Summer School 2018

CONCLUSION ON SC

• PROBLEM WITH STORE BUFFERS
• SC CANNOT REALLY TAKE ADVANTAGE OF STORE BUFFERS

• PROBLEM WITH COMPILERS
• TAKE AGAIN PT-TO-PT SYNCHRONIZATION

P1 P2
... ...
A:=1; while(flag==0)do nothing;
flag:=1; print A;
... ...

• SINCE THERE IS NO DEPENDENCY BETWEEN flag AND A, THE
COMPILER MAY REORDER THE TWO INSTRUCTIONS IN P1

• MIGHT ALSO REMOVE THE LOOP ON flag IN P2

NEXT IDEA: CHANGE THE RULES
MEMORY CONSISTENCY MODELS

MAY RELY OR NOT ON SYNCHRONIZATION

UPMARC Summer School 2018

5. RELAXED MEMORY CONSISTENCY MODELS

UPMARC Summer School 2018

MEMORY CONSISTENCY MODELS

• FIRST: WHY SHOULD WE BOTHER ABOUT THE PROGRAMMER ANYWAY?
• WHY NOT DESIGN MEMORY ACCESS RULES THAT ARE HARDWARE FRIENDLY AND

THEN ASK THE PROGRAMMER TO ABIDE BY THEM??

• SECOND: ARE THERE OTHER PROGRAMMER’S INTUITIONS BESIDES SC?
• SUCH AS PROVIDED BY SYNCHRONIZATION?
• WHENEVER SHARED VARIABLES ARE READ/WRITE ACCESSES TO THEM SHOULD BE

PROTECTED BY LOCKS
BAR IS 0 INITIALLY

P1 P2
A:=1; BARRIER(BAR,2);
B:=2; R1:=A;
BARRIER(BAR,2); R2:=B;

BECAUSE OF THE BARRIER, THE RESULT IS ALWAYS SC AND P2 RETURNS (A=1 AND B=2)

• IN ALL CASES WE NEED A MEMORY ACCESS ORDERING MODEL ON
WHICH PROGRAMMERS AND MACHINE ARCHITECTS CAN AGREE

• IT’S CALLED THE MEMORY CONSISTENCY MODEL

• THIS MODEL MUST BE PART OF THE ISA DEFINITION, SINCE IT IS AT THE
INTERFACE BETWEEN SOFTWARE AND HARDWARE

UPMARC Summer School 2018

RELAXED MEMORY CONSISTENCY MODELS
• WE CAN RELAX SOME OF THE ACCESS ORDERS OF EACH THREAD
• THE MAJOR RELAXATION IS THE STORE-TO-LOAD ORDER: LOADS CAN

BYPASS PRIOR STORES

• STORES FROM THE SAME PROCESSOR MUST BE OBSERVED BY ALL OTHER
PROCESSORS IN THREAD ORDER (BECAUSE OF STORE-STORE AND LOAD-LOAD
ORDERS)

• WHAT DOES THIS MEAN FOR IO PROCESSORS?
• ASSUME MEMORY IS ATOMIC: LOADS RETURN VALUES FROM MEMORY ONLY WHEN

THE VALUES ARE GPed

• LOAD-LOAD, LOAD-STORE, STORE-STORE: SAME AS FOR SC
• STORE-LOAD: LOADs DON’T WAIT FOR SB EMPTY

LOAD LOAD STORE STORE

LOAD STORE LOAD STORE

UPMARC Summer School 2018

RELAXING STORE-TO-LOAD ORDERS

• EXAMPLE: SUN MICRO TOTAL STORE ORDER (TSO)
• DEKKER’S ALGORITHM DOES NOT WORK
• POINT-TO-POINT COMMUNICATION STILL WORKS

• VALUES MAY OR MAY NOT BE FORWARDED FROM
SB TO LOADS
• NO FORWARDING FROM SB  STORE ATOMIC
• FORWARDING FROM SB  NOT STORE ATOMIC (as in TSO)

• THIS MEANS THAT SOME LOADS IN TSO RETURN VALUES EVEN
IF THE VALUES ARE NOT VISIBLE TO THE REST OF THE MEMORY
SYSTEM

UPMARC Summer School 2018

IMPLICATIONS OF RELAXING STORE-TO-LOAD ORDER

• BECAUSE MEMORY ACCESS ORDERS ARE WEAKENED, MORE
EXECUTIONS ARE VALID UNDER RELAXED MEMORY MODELS
• EXAMPLE:

INIT: A=B=0
T1 T2
S1(A)1 S2(B)1
L1(B)0 L2(A)0

• IN SC A LOADS CANNOT BE EXECUTED BEFORE A PREVIOUS STORE IS
GLOBALLY PERFORMED. THUS, THIS IS NOT A VALID EXECUTION.

• NOT SO IN RELAXED MEMORY MODELS!!!!!THIS IS A VALID EXECUTION WITH
STORE-TO-LOAD RELAXATION

• AS A RESULT, SOME PROGRAMS WRITTEN FOR A STRONGER
MODEL WON’T RUN CORRECTLY ON WEAKER MEMORY
MODELS

• IN THE CASE OF STORE-TO-LOAD RELAXATION
• DEKKER’S ALGORITHM DOES NOT WORK
• POINT-TO-POINT COMMUNICATION STILL WORKS

• BECAUSE STORES FROM THE SAME PROCESSOR MUST BE OBSERVED BY ALL OTHER
PROCESSORS IN THEIR THREAD ORDER (BECAUSE STORE-STORE AND LOAD-LOAD
ORDERS ARE ENFORCED)

UPMARC Summer School 2018

NO FORWARDING FROM SB

• VALID EXECUTION
INIT: A=B=0

T1 T2
S1(A)1 S2(B)1
L1(B)0 L2(A)0

• NO ARROW BETWEEN STORE AND LOAD IN EACH THREAD
• NO GLOBAL ORDER BETWEEN THE STORE AND LOAD IN EACH THREAD

STILL GLOBAL MEMORY ORDER IS STORE ATOMIC. THE REASON THIS HAPPENS HAS TO DO
WITH THE BEHAVIOR OF THE PROCESSOR

UPMARC Summer School 2018

MCM USING SYNCHRONIZATION
Locks use special instructions
• RMW (for lock)
• special stores (for unlocks)
Treat locks as FENCES for all
memory accesses
Also called “SYNC” in PowerPC’s
memory model

• lock and unlock act as fences
• perform all preceding

accesses in T.O. before
attempting a SYNC

• perform SYNC before
attempting any following
accesses in T.O.

In between two SYNC Ops, the
order of memory Ops is arbitrary

UPMARC Summer School 2018

WEAK ORDERING

• MULTITHREADED EXECUTION USES LOCKING MECHANISMS TO AVOID
RACE CONDITIONS.

• EXECUTIONS INCLUDE VARIOUS PHASES:
• ACCESSES TO PRIVATE OR READ-ONLY SHARED DATA, OR
• ACCESSES TO SHARED MODIFIABLE DATA, PROTECTED BY LOCKS AND BARRIERS.

• IN EACH PHASE THE THREAD HAS EXCLUSIVE ACCESS TO ALL ITS DATA,
MEANING

• NO OTHER THREAD CAN WRITE TO THEM, OR
• NO OTHER THREAD CAN READ THE DATA IT MODIFIES

• ACCESSES TO SYNCHRONIZATION DATA (INCLUDING ALL LOCKS AND
SHARED DATA IN SYNCHRONIZATION PROTOCOLS) ARE TREATED
DIFFERENTLY BY THE HARDWARE FROM ACCESSES TO OTHER SHARED
AND PRIVATE DATA.

• THEY ACT AS FENCES ON ALL ACCESSES
• MUST GLOBALLY PERFORM ALL ACCESS PRECEDING SYNC ACCESS IN T.O.
• MUST GLOBALLY PERFORM SYNC ACCESS BEFORE ALL FOLLOWING ACCESSES IN T.O.

UPMARC Summer School 2018

WEAK ORDERING

• WEAK ORDERING RELIES ON (HOPEFULLY) CORRECTLY WRITTEN PROGRAMS
IN WHICH RACES ON SHARED DATA ARE PREVENTED THROUGH
SYNCHRONIZATION

• A RACE OCCURS WHEN TWO THREADS ACCESS THE SAME ADDRESS AND AT LEAST ONE OF
THE ACCESSES IS A WRITE

• WHICH MEANS THAT THERE WILL BE HAZARDS
• MULTITHREADED EXECUTION RELIES ON LOCKING MECHANISMS TO AVOID DATA RACE

CONDITIONS.

“DATA-RACE FREE PROGRAMS”

• EXECUTIONS OF DATA-RACE FREE PROGRAMS INCLUDE VARIOUS PHASES:
• ACCESSES TO PRIVATE OR READ-ONLY SHARED DATA, OR
• ACCESSES TO SHARED MODIFIABLE DATA, PROTECTED BY LOCKS AND BARRIERS.
• IN EACH PHASE THE THREAD HAS EXCLUSIVE ACCESS TO ALL ITS DATA, MEANING

• NO OTHER THREAD CAN WRITE TO THEM, OR
• NO OTHER THREAD CAN READ THE DATA IT MODIFIES

UPMARC Summer School 2018

WEAK ORDERING

• ACCESSES TO OTHER (NON-SYNC) SHARED AND PRIVATE DATA MUST ENFORCE
UNIPROCESSOR DEPENDENCIES ON SAME ADDRESS

• OTHERWISE, NO REQUIREMENT
• EVEN COHERENCE IS NOT A REQUIREMENT

• VARIABLES THAT ARE USED FOR SYNCHRONIZATION MUST BE DECLARED AS SUCH
(e.g., flag, A and B below)

• SO THAT EXECUTION ON THESE VARIABLES ARE “SAFE”.

A=flag=0 initially
T1 T2
A:=1; while(flag==0)do nothing;
flag:=1; print A;
... ...

Flag MUST BE DECLARED AS SYNC VARIABLE

UPMARC Summer School 2018

WEAK ORDERING

• A RMW ACCESS TO A MEMORY LOCATION IS GLOBALLY PERFORMED
ONCE BOTH THE LOAD AND THE STORE IN THE RMW ACCESS ARE
GLOBALLY PERFORMED.

• ATOMICITY MUST ALSO BE ENFORCED BETWEEN THE TWO ACCESSES (EASIER IN
WRITE-INVALIDATE PROTOCOLS--TREAT THE T&S AS A STORE IN THE PROTOCOL)

• SYNC OPERATION MUST BE RECOGNIZABLE BY THE HARDWARE AT THE
ISA LEVEL

• RMW (T&S)
• SPECIAL LOADS AND STORES FOR SYNC VARIABLE ACCESSES

• ORDERS TO ENFORCE:

• Op = regular load or store
• Sync = any synchronization access, e.g., swap, T&S, special load/store

SyncOp

OpSync

Sync

Sync

UPMARC Summer School 2018

WEAK ORDERING
• WHAT DOES IT MEAN FOR IO PROCESSORS?

• NOTE: HERE REGULAR LOADS CAN RETURN VALUES EVEN IF THEY ARE NOT GPed

• REGULAR STORES IN THE STORE BUFFER CAN BE EXECUTED IN ANY
ORDER, IN PARALLEL

• REGULAR LOADS NEVER WAIT FOR STORES AND CAN BE FORWARDED
TO

• WHEN A SYNC ACCESS IS EXECUTED, IT IS TREATED DIFFERENTLY:
• IT BLOCKS IN THE MEMORY STAGE UNTIL ALL STORES IN THE STORE BUFFER ARE

GLOBALLY PERFORMED WHICH ENFORCES OP-TO-SYNC.
• SYNC-TO-OP AND SYNC-TO-SYNC ORDERS ARE AUTOMATICALLY

ENFORCED BY IO PROCESSOR
SyncOp

OpSync

Sync

Sync

UPMARC Summer School 2018

RELEASE CONSISTENCY

• A REFINEMENT OF WEAK ORDERING
• DISTINGUISHES BETWEEN ACQUIRES AND RELEASES OF LOCK
• ACQUIRES MUST BE GLOBALLY PERFORMED BEFORE STARTING ANY

FOLLOWING MEMORY OPS
• ALL MEMORY OPS MUST BE GLOBALLY PERFORMED BEFORE A

RELEASE CAN START
• MORE “RELAXED” THAN WEAK ORDERING

• PROGRAMMERS MUST MARK (LABEL) SYNCHRONIZATION
ACCESSES AS “ACQUIRES” OR “RELEASES”
• ACQUIRES AND RELEASES MUST BE SEQUENTIALLY CONSISTENT

• ORDERS TO ENFORCE GLOBALLY

• Op = REGULAR LOAD OR STORE
• Sync = ACQUIRE OR RELEASE

UPMARC Summer School 2018

MCM USING SYNCHRONIZATION
Locks use special instructions
RMW (for lock)
special stores (for unlocks)

Treat locks as FENCES for all
memory accesses
Also called “SYNC” in PowerPC’s
memory model

lock and unlock act as fences,
i.e.
• perform all preceding

accesses in T.O. before
attempting a SYNC

• perform SYNC before
attempting any following
accesses in T.O.

In between two SYNC Ops, the
order of memory Ops is arbitrary

UPMARC Summer School 2018

RELEASE CONSISTENCY

• CONSIDER THE CODE OF T2 IN THE TWO EXAMPLE

• A LOT MORE CONCURRENCY INSIDE PROCESSOR IN RELEASE CONSISTENCY vs WEAK ORDERING
• THE CODE BEFORE UNLOCK(Lx) IN T2 CAN BE EXECUTED IN PARALLEL
• THE CODE AFTER LOCK(Lb) IN T2 CAN BE EXECUTED IN PARALLEL

THE PROBLEM IS TO BE ABLE TO TAKE ADVANTAGE OF THIS ADDITIONAL CONCURRENCY WITHIN EACH THREAD IN A REGULAR PROCESSOR
PLUS PROGRAMMING DIFFICULITES

X:=A+X

C:=D*E
C:=C+K

while(B<3);
<wait>

lock(Lx)

unlock(Lx)

lock(Lb)

unlock(Lb)

B:=B+1

C:=D*E
C:=C+K lock(Lx)

X:=A+X

unlock(Lx)

lock(Lb)

B:=B+1

unlock(Lb)
while(B<3);
<wait>weak ordering

RELEASE CONSISTENCYWEAK ORDERING

UPMARC Summer School 2018

RELEASE CONSISTENCY

• WHAT DOES IT MEAN FOR IO PROCESSOR?

• NO ORDERING RULES AMONG REGULAR LOADs/STOREs
• REGULAR STORES IN THE STORE BUFFER CAN BE EXECUTED IN ANY ORDER, IN PARALLEL
• REGULAR LOADS NEVER WAIT FOR REGULAR STORES IN SB AND CAN BE FORWARDED TO

• ACQUIRES ARE BLOCKING: THUS ACQUIRE-OP AND ACQUIRE-SYNC ORDERS ARE
AUTOMATICALLY ENFORCED

• A RELEASE IS INSERTED IN THE STORE BUFFER WITH REGULAR STORES.
• OP-RELEASE AND RELEASE-RELEASE ORDERS: RELEASES MUST WAIT IN SB UNTIL ALL PRIOR STORES AND

RELEASES ARE GP (LOADS PRIOR TO THE RELEASE HAVE RETIRED)
• RELEASE-ACQUIRE ORDER: AN ACQUIRE WAITS UNTIL ALL PRIOR RELEASES IN SB HAVE BEEN GPed

•

IF ID EX ME WB

I-$ D-$ Main

store buffer(SB)
Memory

lw
sw

UPMARC Summer School 2018

6. SPECULATIVE VIOLATIONS OF MEMORY
CONSISTENCY MODELS

UPMARC Summer School 2018

OoO PROCESSORS

NOTE

UPMARC Summer School 2018

LOADs/STOREs HANDLING IN SPECULATIVE OoO
PROCESSORS

• WHEN THE LOAD ADDRESS IS KNOWN, THE LOAD CAN ISSUE
TO CACHE
• PROVIDED NO STORE WITH THE SAME OR AN UNKNOWN ADDRESS IS

AHEAD IN THE L/S QUEUE (CONSERVATIVE MEMORY DISAMBIGUATION)
• CAN EVEN BE ISSUED BEFORE ADDRESSES OF PREVIOUS STORES

ARE KNOWN (SPECULATIVE MEMORY DISAMBIGUATION)

• IN BOTH CASES THE VALUE OF A LOAD ISSUED TO CACHE IS
RETURNED AND USED SPECULATIVELY BEFORE THE LOAD
RETIRES
• THE LOAD VALUE IS NOT BOUND UNTIL THE LOAD RETIRES
• THE VALUE CAN BE RECALLED FOR ALL KINDS OF REASONS

(MISSPREDICTED BRANCH, EXCEPTION, ETC...)

• STORES CANNOT UPDATE CACHE UNTIL THEY REACH THE
TOP OF THE ROB
• AS STORES REACH THE TOP OF THE REORDER BUFFER AND OF THE

L/S QUEUE THEY COMMIT BY MOVING TO THE STORE BUFFER

UPMARC Summer School 2018

CONSERVATIVE MCM ENFORCEMENT

• THE ONLY TIME THAT IT IS KNOWN FOR SURE THAT A MEMORY
ACCESS CAN BE PERFORMED IS WHEN IT REACHES THE TOP OF
ROB
• BEFORE THAT AN ACCESS (LOAD OR STORE) IS SPECULATIVE
• STORES MUST WAIT UNTIL THEN ANYWAY

• COULD WAIT TO EXECUTE AND PERFORM A LOAD IN CACHE UNTIL
IT REACHES THE TOP OF ROB
• DOWNSIDE: NO MEMORY LATENCY TOLERANCE DUE TO OoO EXECUTION

• IN THIS CONSERVATIVE SCHEME, LOADs AND STOREs CAN STILL
BE PREFETCHED IN CACHE (NON-BINDING PREFETCHES)
• IF THE LOAD OR STORE DATA IS IN THE RIGHT STATE IN CACHE AT THE TOP

OF THE ROB, PERFORMING THE ACCESS TAKES ONE CACHE CYCLE.
• STILL, LOAD VALUES CAN NOT BE USED SPECULATIVELY

NEXT IDEA: EXPLOIT SPECULATIVE EXECUTION TO SPECULATIVELY VIOLATE MEMORY ORDERS

WORKS BECAUSE ORDER VIOLATIONS ARE RARE

UPMARC Summer School 2018

SPECULATIVE VIOLATIONS OF SEQUENTIAL
CONSISTENCY

• LET’S LOOK AGAIN AT ORDERS TO ENFORCE GLOBALLY

• LOAD-STORE AND STORE-STORE ORDERS ARE ENFORCED
• BECAUSE STOREs ARE SENT TO THE STORE BUFFER ONLY WHEN

THEY RETIRE FROM THE PROCESSOR, AND
• PROVIDED STOREs ARE GLOBALLY PERFORMED ONE BY ONE IN

ORDER FROM THE STORE BUFFER

• REMAINING ORDERS ARE LOAD-LOAD AND STORE-LOAD
• THE SECOND ACCESS IN THESE ORDERS IS A LOAD

EXPLOIT SPECULATION

LOAD LOAD STORE STORE

LOAD STORE LOAD STORE

UPMARC Summer School 2018

SPECULATIVE VIOLATIONS OF SEQUENTIAL
CONSISTENCY

• BASIC IDEA:
• PERFORM ALL LOADs AND USE THE VALUE RETURNED BY EACH LOAD

SPECULATIVELY, AS IN UNIPROCESSOR
• LATER, WHEN THE LOAD RETIRES AT THE TOP OF ROB, CHECK WHETHER

THE VALUE OF THE LOAD HAS CHANGED
• ROLL BACK IF IT HAS. OTHERWISE CONTINUE.

• TWO MECHANISMS ARE NEEDED: VALIDATION AND ROLLBACK
• VALIDATION OF LOAD VALUES AT THE TOP OF ROB

• CHECK THE VALUE OF THE LOAD BY RE-EXECUTING THE LOAD IN CACHE (Pb: TWO
CACHE ACCESSES FOR EACH LOAD)

• OR: MONITOR EVENTS THAT COULD CHANGE THE SPECULATIVE VALUE OF A LOAD
BETWEEN THE TIME THE LOAD RETURNS THE VALUE SPECULATIVELY UNTIL THE
LOAD COMMITS

• “”EVENTS” INCLUDE INVALIDATES, UPDATES OR CACHE REPLACEMENTS IN THE NODE’S
CACHE
• THESE EVENTS SNOOP THE LOAD Q

• ROB ROLLBACK USES SAME MECHANISM AS MISPREDICTED BRANCHES
OR EXCEPTIONS

LOAD VALUE RECALL

UPMARC Summer School 2018

SPECULATIVE VIOLATIONS OF SEQUENTIAL
CONSISTENCY

• LOAD-LOAD ORDER: USE LOAD VALUE RECALL

• STORE-LOAD ORDER: USE LOAD VALUE RECALL + STALL LOADS AT TOP
OF ROB UNTIL ALL PREVIOUS STOREs HAVE BEEN GLOBALLY
PERFORMED

• LOAD-STORE ORDER: STOREs RETIRE AT TOP OF ROB, BY THAT TIME ALL
PREVIOUS LOADS HAVE RETIRED

• STORE-STORE ORDER: STOREs ARE RETIRED AT TOP OF ROB + STOREs
ARE GLOBALLY PERFORMED FROM STORE BUFFER ONE BY ONE IN T.O.

• PERFORMANCE ISSUES
• A LOAD MAY REACH THE TOP OF THE ROB BUT CANNOT PERFORM AND IS STALLED

BECAUSE OF PRIOR STORES IN THE STORE BUFFER
• THIS BACKS UP THE ROB (AND OTHER INTERNAL BUFFERS) AND EVENTUALLY STALLS

THE PROCESSOR
RELAX STORE-LOAD ORDER (TSO)

UPMARC Summer School 2018

SPECULATIVE TSO VIOLATIONS

• LOAD-LOAD ORDER: USE LOAD VALUE RECALL

• STORE-LOAD ORDER: NO NEED TO ENFORCE. THUS VALUE OF LOAD
SHOULD NOT BE RECALLED IF ALL PRECEDING PENDING ACCESSES IN
THE LOAD/STORE Q ARE STOREs (POSSIBLE OPTIMIZATION) + LOADS
DON’T WAIT ON STORES IN SB

• LOAD-STORE ORDER: STOREs RETIRE AT TOP OF ROB

• STORE-STORE ORDER: STOREs RETIRE AT TOP OF ROB + STOREs ARE
GLOBALLY PERFORMED FROM STORE BUFFER IN T.O.

• PERFORMANCE ISSUES:
• IF A LONG LATENCY STORE BACKS UP THE STORE BUFFER THEN STORES CANNOT

RETIRE, WHICH MAY BACK UP THE ROB AND OTHER Q’s AND STALL DISPATCH

RELAX ORDERS FURTHER WITH WEAK ORDERING OR RELEASE
CONSISTENCY

UPMARC Summer School 2018

SPECULATIVE EXECUTION OF RMW ACCESSES

• RMW INSTRUCTIONS ARE MADE OF A LOAD FOLLOWED BY A
STORE
• MUST EXECUTE AS A GROUP AND BE ATOMIC

• BECAUSE OF THE LOAD, THE VALUE OF THE LOCK IS RETURNED
SPECULATIVELY
• BASED ON THE SPECULATIVE LOCK VALUE THE CRITICAL SECTION IS

ENTERED SPECULATIVELY OR THE LOCK IS RETRIED SPECULATIVELY
• THIS ACTIVITY IS ALL SPECULATIVE IN THE ROB. NO MEMORY UPDATES.
• LOADs IN RMW ACCESSES MUST REMAIN SUBJECT TO LOAD VALUE RECALL

UNTIL THE RMW IS RETIRED
• IF VIOLATION IS DETECTED LOAD IS ROLLED BACK

• BECAUSE OF THE STORE, THE RMW ACCESS DOES NOT UPDATE
MEMORY (AND CANNOT PERFORM) UNTIL THE TOP OF THE ROB
• THE LOAD AND THE STORE CAN BE PERFORMED ATOMICALLY IN CACHE

WITH A WRITE-INVALIDATE PROTOCOL
• IF THE STORE CAN EXECUTE AT THE TOP OF THE ROB, THEN NO OTHER

THREAD GOT THE LOCK DURING THE TIME THE RMW WAS SPECULATIVE

UPMARC Summer School 2018

SPECULATIVE EXECUTION OF RMW ACCESSES

EXAMPLE: BUSY WAITING ON HIGHLY CONTENDED LOCK
Lock: T&S R1, lock Unlock: SW R0, lock

BNEZ R1, Lock RET
RET

ASSUME LOCK BLOCKS Ld RETURNS 1; INVALIDATION COMES IN FOR LOCK

LOCK IS RELEASED; ROB IS FLUSHED; Ld READS 0 SPECULATIVELY; INV COMES IN

• IN THIS EXAMPLE, THE THREAD IS LOCKED OUT OF THE CS SPECULATIVELY
• THEN THE LOCK IS RELEASED, WHICH CAUSES AN INVALIDATION AND ROLLBACK
• THEN THE Ld IS RE-EXECUTED SPECULATIVELY AND LOCK IS FREE
• BUT AN INVALIDATION COMES IN BEFORE THE T&S HAS BEEN ABLE TO COMMIT
• SO THE EXECUTION MUST ROLLBACK AGAIN

INV
lock

ROB

Ld_1
lock*

St_1
lock*

BnezLd_1
lock*

St_1
lock*

BnezLd_1
lock*

St_1
lock*

Bnez

MUST BE ATOMIC

INV
lock

Ld_0
lock*

St_1
lock*

BnezRetIns 1Ins 2

UPMARC Summer School 2018

SPECULATIVE VIOLATIONS OF WEAK ORDERING

• OP-TO-SYNC:
• ANY ACCESS TO A SYNC VARIABLE MUST BE GLOBALLY PERFORMED ATOMICALLY AT THE

TOP OF THE ROB
• PREVIOUS LOADS HAVE RETIRED
• PREVIOUS STORES HAVE RETIRED FROM PROCESSOR

• THE STORES IN THE SB MUST EXECUTE IN CACHE BEFORE THE SYNC CAN START ITS EXECUTION IN CACHE

• SYNC-TO-OP
• REGULAR STORES FOLLOWING AN ACCESS TO A SYNC VARIABLE CANNOT PERFORM IN

CACHE UNTIL THEY REACH THE TOP OF ROB.
• REGULAR LOADs RETURN THEIR VALUE SPECULATIVELY AND ARE NOT SUBJECT TO LOAD

VALUE RECALL
• SYNC-TO-SYNC

• SYNC CAN ONLY EXECUTE IN CACHE AT THE TOP OF ROB
• PRIOR SYNCs ARE RETIRED BY THEN

• A LOAD OF A SYNC VARIABLE (INCLUDING THE LOAD IN A RMW ACCESS) CAN RETURN ITS
VALUE SPECULATIVELY PROVIDED IT IS SUBJECT TO LOAD VALUE RECALL.

• EXECUTION IS NOT ROLLED BACK

SyncOp

OpSync

Sync

Sync

INV a

Ld_0
lock*

St_1
lock*

BnezRetLd aIns 2

UPMARC Summer School 2018

SPECULATIVE VIOLATIONS OF RELEASE CONSISTENCY
• IN RC, A RELEASE MAY NOT PERFORM UNTIL ALL PREVIOUS ACCESSES ARE GLOBALLY

PERFORMED AND ACCESSES FOLLOWING AN ACQUIRE MUST BE DELAYED UNTIL THE ACQUIRE
IS GLOBALLY PERFORMED.

• Acquire-Op: RC REQUIRES THAT ACQUIRES MUST BE PERFORMED BEFORE ANY FOLLOWING
REGULAR ACCESS CAN PERFORM.

• HOWEVER THE VALUE OF REGULAR LOADS MAY BE RETURNED AND USED SPECULATIVELY.
• REGULAR LOADS ARE NOT SUBJECT TO VALUE RECALL,

• Op-Release: RELEASES ARE PUT IN THE STORE BUFFER AS “SPECIAL” STORES
• BY THAT TIME ALL PREVIOUS LOADS HAVE BEEN EXECUTED
• RELEASE MUST WAIT IN SB UNTIL ALL PREVIOUS STORES HAVE BEEN PERFORMED

• Acquire-Acquire & Acquire-Release: ACQUIRES EXECUTE AT THE TOP OF ROB, BEFORE ANY
ACQUIRE OR RELEASE HAS A CHANCE TO EXECUTE

• SYNC LOADS IN ACQUIRES CAN RETURN THEIR VALUE SPECULATIVELY BUT ARE SUBJECT TO VALUE RECALL
• Release-Release: RELEASES JOIN THE SB ONE BY ONE IN THREAD ORDER

• RELEASES MUST WAIT IN SB UNTIL ALL PREVIOUS RELEASES HAVE EXECUTED IN CACHE
• STORES IN SB CAN EXECUTE IN CACHE IN ANY ORDER, EVEN BYPASSING PREVIOUS RELEASES

• Release-Acquire: ACQUIRES MUST WAIT UNTIL ALL PRIOR RELEASES IN SB ARE PERFORMED IN
CACHE

STORE BUFFER

SSRSSSRSSR

UPMARC Summer School 2018

8. ADVANCED TOPICS

UPMARC Summer School 2018

DO WE NEED COHERENCE UNDER WEAK ORDERING?

L1

P

L2

L1 L1

PP

Processors execute from
their L1 cache
Before a processor can
execute a SYNC, it flushes
its L1 cache, writing back all
dirty block and invalidating
Then it executes the SYNC
in shared L2

It is coherent if the program
is correct
It is not if the program is
incorrect

UPMARC Summer School 2018

SPECULATIVE RETIREMENT OF NON-STORE
INSTRUCTIONS

HOW TO MAKE SEQUENTIAL CONSISTENCY COMPETITIVE WITH RELAXED MODELS

• IN SPECULATIVE SC, A LOAD AT THE TOP OF THE ROB
MUST WAIT UNTIL ALL PRECEDING STORES IN THE
STORE BUFFER ARE GLOBALLY PERFORMED BEFORE
RETIRING

• NEW (SCARY!!) IDEA: SPECULATIVE RETIREMENT OF
NON-STORE INSTRUCTIONS
• SPECULATIVELY RETIRE A LOAD AND ALL DEPENDENT NON-

STORE INSTRUCTIONS
• THE LIKELIHOOD THAT THE LOAD WILL BE RECALLED IS VERY

LOW

THIS DOES NOT HELP TSO, BUT IT HELPS SC

UPMARC Summer School 2018

SPECULATIVE RETIREMENT OF NON-STORE
INSTRUCTIONS

HOW TO MAKE SEQUENTIAL CONSISTENCY COMPETITIVE WITH RELAXED
MODELS

WHEN A LOAD INSTRUCTION REACHES THE TOP OF THE ROB, IS COMPLETE,
AND IS STALLED BECAUSE OF PRIOR STORES AND THE PROCESSOR IS
BACKED UP BECAUSE OF THAT:

• THE LOAD IS REMOVED FROM THE ROB AND SPECULATIVELY
RETIRES—MEANING IT MODIFIES THE ARCHITECTURAL REGISTER AND
FREES QUEUES

• A RECORD FOR THE LOAD IS INSERTED IN A FIFO HISTORY BUFFER
• FOLLOWING INSTRUCTIONS ARE ALSO RETIRED FROM THE ROB

SPECULATIVELY AND RECORDS ARE ALSO INSERTED
• STORE INSTRUCTIONS ARE PUT IN THE STORE BUFFER
• HISTORY BUFFER ENTRY CONTAINS THE PC, THE OLD REGISTER

VALUE AND THE OLD MAPPING FOR RECOVERY
• STORES AND BRANCHES ARE NOT INSERTED IN THE HISTORY BUFFER

SINCE THEY DO NOT UPDATE ARCHITECTURAL REGISTERS
• HISTORY BUFFER ENTRIES ARE RECLAIMED AS SOON AS ALL STORES

PRIOR TO THEM HAVE RETIRED FROM THE STORE BUFFER

UPMARC Summer School 2018

SPECULATIVE RETIREMENT OF NON-STORE
INSTRUCTIONS

HOW TO MAKE SEQUENTIAL CONSISTENCY COMPETITIVE WITH RELAXED
MODELS

UPMARC Summer School 2018

SPECULATIVE RETIREMENT OF NON-STORE
INSTRUCTIONS

• VIOLATION DETECTION
• INVALIDATION OR REPLACEMENT OF BLOCK WITH

SPECULATIVE LOAD
• RECOVERY

• IF LOAD IS STILL IN THE ROB, PROCEED AS BEFORE FOR
SPECULATIVE LOADS

• IF LOAD IS SPECULATIVELY RETIRED IN THE HISTORY BUFFER,
STATE MUST BE RESTORED BY PROCESSING HISTORY BUFFER
ENTRIES IN REVERSE ORDER

• REMOVE STORES FOLLOWING THE VIOLATING LOAD FROM THE
STORE BUFFER

SPECULATIVE RETIREMENT OF LOADS CLOSES THE GAP
BETWEEN SC AND TSO BECAUSE IT ENABLES THE USE OF

STORE BUFFERS IN SC
AN ALTERNATIVE IS TO USE A LARGER WINDOW AND SUFFER

THE CONSEQUENCES (LONGER CYCLE TIME)

UPMARC Summer School 2018

SPECULATIVE RETIREMENT OF ALL INSTRUCTIONS

• A RECORD IS LOGGED IN THE HiQ FOR ALL SPECULATIVELY
RETIRED INSTRUCTIONS MODIFYING MACHINE STATE

• RECORD FOR STORES MUST INCLUDE THE PREVIOUS MEMORY
VALUE SO THAT IT CAN BE RESTORED
• THUS SPECULATIVELY RETIRED STORE MUST EXECUTE AS RMW

• AS PENDING STORES IN SB PERFORM, THE ENTRIES AT THE TOP
OF HiQ ARE DEALLOCATED UP UNTIL THE NEXT PENDING STORE
IN SB

• VIOLATION DETECTION
• EVERY INVALIDATION/UPDATE, EVERY REMOTE LOAD AND EVERY NODE

REPLACEMENT OF A SPECULATIVELY LOADED OR STORED CACHE BLOCK
• VIOLATION RECOVERY

• ROLLBACK TO THE FIRST INSTRUCTION IN THREAD ORDER ACCESSING THE
FAULTING BLOCK

• ALL THE MEMORY LOCATIONS ACCESSED IN THE ROLLBACK ARE
GUARANTEED TO BE IN THE NODE’S CACHE

• UPON ENDING ROLLBACK FURTHER SPECULATIVE EXECUTION IS INHIBITED
WHILE WAITING FOR THE PENDING STORES TO FINISH

UPMARC Summer School 2018

