
Princeton University

UPMARC 2018

Caroline Trippel & Yatin A. Manerkar

Why Memory Consistency Models Matter...
And tools for analyzing and verifying them

http://check.cs.princeton.edu/tutorial.html

While you wait:

1) Make sure you’ve got VirtualBox downloaded to your laptop:

https://www.virtualbox.org/wiki/Downloads

2) Make sure you have the most recent version of the Tutorial VM downloaded:

http://check.cs.princeton.edu/tutorial_vm/Check_Tools_VM.ova

VM Password: mcmsarefun

https://www.virtualbox.org/wiki/Downloads
http://check.cs.princeton.edu/tutorial_vm/Check_Tools_VM.ova

Memory Consistency Models

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

SW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

HW MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

Memory Consistency Models

JVMLLVM IR PTX SPIR

Java

Bytecode

C11/

C++11

Cuda OpenCL

x86

CPU

ARM

CPU

Power

CPU

Nvidia

GPU

AMD

GPU

…

…

…

Shared Virtual Memory

IR MCMs

Memory Consistency Models (MCMs)

Specify rules and guarantees about the ordering and
visibility of accesses to shared memory [Sorin et al., 2011].

▪A bug in any layer can cause a
“correct” program to produce
incorrect outcomes

• Ill-specified HLL memory model

• Incorrect HLL→ISA compilation

• Inadequate ISA specification

• Incorrect hardware implementation

▪Benefits to verifying this stack as a
whole

Microarchitecture

Compilation

Hardware Implementation

High-level Language
(HLL) Memory Model

ISA
Memory Model

What can go wrong?

Goals

▪Ultimately want to write correct and efficient concurrent programs

▪Concurrent programs are compiled and eventually run on hardware

• Hardware reorders instructions and state updates for performance

• Shared memory for inter-thread communication

▪Memory Consistency Models (MCMs): govern inter-thread
communication in the presence of shared memory

• Specified at the various layers of the hardware-software stack

• Require precise specifications, translations between layers

▪MCM bugs anywhere in hardware-software stack can cause a
“correct” high-level language program can produce incorrect results

Our Approach Today

▪Basic overview of MCMs

▪Our suite of tools for MCM verification

▪Hands-on verification examples

• PipeCheck: Verification of a HW design w.r.t. an ISA MCM specification

• TriCheck: Full-stack (HLL→Compiler→ISA→HW) MCM verification

▪Provide you with a general modeling/verification approach that can
be applied to other problem areas

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Motivating Example: ARM Read-after-Read Hazard

▪ARM ISA spec ambiguous regarding same-address Ld→Ld ordering:

• ARM compilers did not insert fences

• Some ARM implementations relax same-address Ld→Ld ordering

▪C/C++ variables with atomic type require same-addr. Ld→Ld ordering

▪ARM issued errata1:

• Rewrite compilers to insert fences with performance penalties

▪ARM had ordering instructions in ISA to guarantee correctness

1ARM. Cortex-A9 MPCore, programmer advice notice, read-after-read hazards. ARM Reference 761319.,
2011. http://infocenter.arm.com/help/topic/com.arm.doc. uan0004a/UAN0004A_a9_read_read.pdf.

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

ARM Cortex-A9

ARM Read-Read Hazard

ARM Read-Read Hazard

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

ARM Cortex-A9

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

ARM Read-Read Hazard

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

ARM Cortex-A9

T0 T1

st(data,1,rlx) st(data,2,rlx)

r1=ld(*ptr,rlx)

r2=ld(data,rlx)

Initial conditions: data=0, atomic *ptr=&data
Forbidden by C11: r1=2, r2=1

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

T0 T1

st(data,1,rlx) st(data,2,rlx)

r1=ld(*ptr,rlx)

r2=ld(data,rlx)

ARM Read-Read Hazard

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

ARM Cortex-A9

C0 C1

ST [data]1 ST [data]2

LD [ptr]→r0

LD [r0]→r1

LD [data]→r2

Initial conditions: data=0, atomic *ptr=&data
Forbidden by C11: r1=2, r2=1

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

ARM Read-Read Hazard

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

T0 T1

st(data,1,rlx) st(data,2,rlx)

r1=ld(*ptr,rlx)

r2=ld(data,rlx)

Two loads of the
same address

Initial conditions: data=0, atomic *ptr=&data
Forbidden by C11: r1=2, r2=1

ARM Cortex-A9

C0 C1

ST [data]1 ST [data]2

LD [ptr]→r0

LD [r0]→r1

LD [data]→r2

Forbidden outcome
observable on Cortex-A9

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

ARM Read-after-Read Hazard Demo
Google Nexus 6 (Snapdragon 805)

http://check.cs.princeton.edu/tutorial_extras/SnapVideo.mov

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Benefits of Full-Stack Verification

▪Categorization & quantification of
bugs in the HW-SW stack

• Effects of ISA MCM issues on the
correctness of HLL programs

• Effects of desirable HW optimizations
on ISA-HLL compatibility

▪We have found real bugs:

• RISC-V MCM draft spec

• Compiler mappings from C11 to
Power and ARMv7, leading to
discovery of C11 MCM bug

High-Level Languages

Compiler

Architecture

Implementation

OS

TriC
h

eck [A
SP

LO
S ‘1

7
]

RTL

Full-Stack is the Result of a Whole Line of Work

Architecture

Implementation

• Formal specifications -> Happens-before graphs
• Litmus tests for events of interest
• Check Happens-Before Graphs via Efficient SMT

solvers
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

• Fast enough for broad testing

PipeCheck [Micro-47]

A

C

B

Full Stack is the Result of a Whole Line of Work

High-Level Languages

Compiler

Architecture

Implementation

OS
TriCheck [ASPLOS ‘17]

COATCheck [ASPLOS ‘16]

ArMOR [ISCA ‘15]

• Formal specifications -> Happens-before graphs
• Litmus tests for events of interest
• Check Happens-Before Graphs via Efficient SMT

solvers
• Cyclic => A->B->C->A… Can’t happen
• Acyclic => Scenario is observable

• Fast enough for broad testing

A

C

B

RTL

PipeCheck [Micro-47]
CCICheck [Micro-48]

RTLCheck [MICRO-50]

Full Stack is the Result of a Whole Line of Work

High-Level Languages

Compiler

Architecture

Implementation

OS
TriCheck [ASPLOS ‘17]

COATCheck [ASPLOS ‘16]

ArMOR [ISCA ‘15]

RTL

PipeCheck [Micro-47]
CCICheck [Micro-48]

RTLCheck [MICRO-50]
So far, tools have found bugs in:
• Widely-used Research simulator
• Cache coherence paper
• IBM XL C++ compiler (fixed in

v13.1.5)
• In-design commercial processors
• RISC-V ISA specification
• Compiler mapping proofs
• C++ 11 mem model

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Sequential Consistency (SC)

▪Defined by [Lamport 1979], execution is the same as if:

(R1) Memory ops of each processor appear in program order

(R2) Memory ops of all processors were executed in some global
sequential order

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

x=1

r1=y

y=1

r2=x

x=1

y=1

r1=y

r2=x

x=1

y=1

r2=x

r1=y

y=1

r2=x

x=1

r1=y

y=1

x=1

r2=x

r1=y

y=1

x=1

r1=y

r2=x

Program Legal Executions

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer
x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

r1=y r2=x

x=0 y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer
x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

r1=y r2=x

x=0 y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer
x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

r1=y r2=x

x=0 y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer
x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

r2=x

x=0 y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer
x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

x=0 y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory

y = 1

Total Store Order (TSO)

Store

Buffer

x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

y=0

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Store

Buffer

Shared Virtual Memory
y = 1

Total Store Order (TSO)

Store

Buffer

x=1

Core

C

Store

Buffer

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

Core

B

Core

A

r1=0 r2=0

F
ir

st
in

st
.

(i
0
) Second Inst. (i1)

TSO PPO Ld St

Ld ✓ ✓

St ✓

Total Store Order

Thread 0

x=1

r1=y

Thread 1

y=1

r2=x

x=1

r1=y

y=1

r2=x

x=1

y=1

r1=y

r2=x

x=1

y=1

r2=x

r1=y

y=1

r2=x

x=1

r1=y

y=1

x=1

r2=x

r1=y

y=1

x=1

r1=y

r2=x

Program Legal Executions

r1=y

x=1

y=1

r2=x

r1=y

y=1

x=1

r2=x

r1=y

y=1

r2=x

x=1

y=1

r2=x

r1=y

x=1

y=1

r1=y

r2=x

x=1

y=1

r1=y

x=1

r2=x

x=1

r1=y

r2=x

y=1

x=1

r2=x

r1=y

y=1

x=1

r2=x

y=1

r1=y

r2=x

y=1

x=1

r1=y

r2=x

x=1

y=1

r1=y

r2=x

x=1

r1=y

y=1

r1=y

x=1

r2=x

y=1

r1=y

r2=x

x=1

y=1

r1=y

r2=x

y=1

x=1

r2=x

y=1

r1=y

x=1

r2=x

r1=y

y=1

x=1

r2=x

r1=y

x=1

y=1

Memory Consistency Models: Critical ISA &
System Component

…

Memory Consistency Models: Critical ISA &
System Component

Load Store

Load ✓ ✓

Store ✓/

Type B (second)Type A
(first)

…

Memory Consistency Models: Critical ISA &
System Component

Load Store

Load ✓ ✓

Store ✓/

Type B (second)Type A
(first)

…

Microarchitectural Consistency Verification
▪Microarch. enforces ISA-level MCM through many small orderings

• In-order fetch/commit

• FIFO store buffers

• Coherence protocol

• …

▪Difficult to ensure that these

orderings always enforce the

required orderings Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

▪ Designs may also be complicated by optimizations (speculative load
reordering, early fence retirement, OoO execution), or novel organization
(heterogeneity)

Our approach: “microarchitecturally
happens-before” (μhb) graphs

▪ F

▪X

▪W

▪ STB

▪MM

(i1)
Initially: [x]=[y]=0

Core 0 Core 1

(i1) st [x] 1
(i2) ld [x] → r1
(i3) ld [y] → r2

(i4) st [y] 1
(i5) ld [y] → r3
(i6) ld [x] → r4

Program outcome of interest:
r1=1, r2=0, r3=1, and r4=0

(i2) (i3) (i4) (i5) (i6)

Core 0 Core 1

1. Draw edges that correspond to
outcome-independent orderings

Key Idea: Model executions of
programs on HW as µhb graphs

▪ Nodes: Microarchitectural
events in an execution

▪ Edges: Happens-before
relationships between nodes

Our approach: “microarchitecturally
happens-before” (μhb) graphs

▪ F

▪X

▪W

▪ STB

▪MM

(i1)
Initially: [x]=[y]=0

Core 0 Core 1

(i1) st [x] 1
(i2) ld [x] → r1
(i3) ld [y] → r2

(i4) st [y] 1
(i5) ld [y] → r3
(i6) ld [x] → r4

Program outcome of interest:
r1=1, r2=0, r3=1, and r4=0

(i2) (i3) (i4) (i5) (i6)

Core 0 Core 1

from-reads

reads-from

2. Draw edges that correspond to
outcome-dependent orderings

Key Idea: Model executions of
programs on HW as µhb graphs

▪ Nodes: Microarchitectural
events in an execution

▪ Edges: Happens-before
relationships between nodes

Our approach: “microarchitecturally
happens-before” (μhb) graphs

▪ F

▪X

▪W

▪ STB

▪MM

(i1)
Initially: [x]=[y]=0

Core 0 Core 1

(i1) st [x] 1
(i2) ld [x] → r1
(i3) ld [y] → r2

(i4) st [y] 1
(i5) ld [y] → r3
(i6) ld [x] → r4

Program outcome of interest:
r1=1, r2=0, r3=1, and r4=0

(i2) (i3) (i4) (i5) (i6)

Core 0 Core 1

No cycle in graph, so program
outcome is observable!

Key Idea: Model executions of
programs on HW as µhb graphs

▪ Nodes: Microarchitectural
events in an execution

▪ Edges: Happens-before
relationships between nodes

Litmus test verification

▪ Litmus tests – small parallel programs

• Used to highlight memory model differences/features

• Typically there is one non-SC outcome of interest

▪Different litmus tests associated with different ISA models

• ISA memory model often characterized by their Permitted and Forbidden
non-SC litmus test outcomes

• TSO litmus test suite, Power litmus test suite, ARM litmus test suite

▪Why litmus test verification?

• Higher performance when evaluating complex designs

• Enables us to have a fast, iterative design process

• Focus on verification cases most likely to exhibit bugs

Litmus test verification (for TSO)

Message Passing (MP)

P0 P1

W x  1 R y → 0

W y  1 R x → 0

SC Outcome Permitted

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y → 0 R x → 0

Non-SC Outcome
Permitted

Message Passing (MP)

P0 P1

W x  1 R y → 0

W y  1 R x → 1

SC Outcome Permitted

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y → 0 R x → 1

SC Outcome Permitted

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y → 1 R x → 0

SC Outcome Permitted

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y → 1 R x → 1

SC Outcome Permitted

Message Passing (MP)

P0 P1

W x  1 R y → 1

W y  1 R x → 1

SC Outcome Permitted

Message Passing (MP)

P0 P1

W x  1 R y → 1

W y  1 R x → 0

Non-SC Outcome
Forbidden

Many litmus tests have been developed over the years; they have names e.g., MP, SB
Initial conditions are all 0 unless otherwise stated
This tutorial: we use a sprinkling of established tests

MP litmus test

SB litmus test

Compare ISA Executions with Hardware Executions

▪At the ISA level a litmus test outcome can be:

• Permitted

• Forbidden

▪Our approach: At the hardware level a litmus test outcome can be:

• Observable

• Unobservable

Observable Unobservable

Permitted OK OK (Stricter than necessary)

Forbidden BUG OK

What our hardware-level analysis tells usWhat ISA level
analysis tells us

Does hardware correctly implement memory model?

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Permitted AND Observable
OR

Permitted AND Unobservable
OR

Forbidden AND Unobservable

?

Observable Unobservable

Permitted OK OK

Forbidden BUG OK

Our analysisInstruction
level analysis

Check Inputs: Microarchitecture Spec + Litmus Tests

Coherence Protocol (SWMR, DVI, etc.)

Microarchitecture Specification in μspec DSL

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

WB

Mem.

SB

L1

Exec.

Dec.

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Permitted AND Observable
OR

Permitted AND Unobservable
OR

Forbidden AND Unobservable

?

Refer to Quick Start Guide for
more information on the μSpec
DSL and how to write axioms.

Check Inputs: Microarchitecture Spec + Litmus Tests

Coherence Protocol (SWMR, DVI, etc.)

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Microarchitectural happens-before (µhb) graphs

WB

Mem.

SB

L1

Exec.

Dec.

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO").

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch)) =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

Microarchitecture Specification in μSpec DSL

Litmus Test

In a nutshell, our tool philosophy…

▪Automate specification, verification, and translation related to MCMs

▪Comprehensive exploration of ordering possibilities

▪Key Techniques: Happens-before Graphs and SMT solvers

▪Bounded, litmus-test driven verificatiom

• We have other related techniques for whole-program, more comprehensive
design analysis

• And we have templates to assist in the automatic generation of “families” of
litmus tests

▪Verificaiton conducted on and axiomatic model of hardware

• We have tools for verifying this model is representative of real RTL

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Overview
▪Modelling simple microarchitectures (µarches) in µSpec

• Give you a taste of what µSpec can model and reason about

▪Begin by modelling a SC µarch

• Partially completed µarch in VM, you will fill in remainder

▪Post-coffee break, will look at expanding this SC µarch to TSO

• Store buffers

• Reading own write early (time permitting)

• Fences (time permitting)

Specifying a Simple (SC) Microarch. in µSpec

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Specifying a Simple (SC) Microarch. in µSpec

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
3-stage

in-order

pipelines

Specifying a Simple (SC) Microarch. in µSpec

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Loads

access

Mem in

Execute

stage

Specifying a Simple (SC) Microarch. in µSpec

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Stores sent

to Memory

after

Writeback

Stores sent

to Memory

after

Writeback

Specifying a Simple (SC) Microarch. in µSpec

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Stores sent

to Memory

after

Writeback

Stores sent

to Memory

after

Writeback

1. Start VirtualBox VM

2. Open a Terminal

3. Partially completed SC uarch in
/home/check/pipecheck_tutorial/uarches/SC_fillable.uarch
(i.e. ~/pipecheck_tutorial/uarches/SC_fillable.uarch)

µSpec: A DSL for Specifying Microarchitectures

▪Language has capabilities similar to first-order logic

• forall, exists, AND (/\), OR (\/), NOT (~), implication (=>)

▪Microarchitecture spec is a set of axioms

• Each axiom enforces a partial ordering on execution events…

• …which correspond to individual smaller microarchitectural
orderings!

• Eg: Some axioms for pipeline stages, others for coherence…

▪ Job of PipeCheck is to ensure that axioms correctly work
together to uphold the requirements of the ISA-level MCM

▪Axiom writing is an iterative process

Specifying µSpec Nodes

▪A node represents a particular event in a particular instruction’s
execution

▪Eg: (i, Fetch) represents the fetch stage of instruction i

▪Sometimes the core of a node needs to be explicitly specified

▪Eg: (i, (0, MemoryHierarchy)) represents i reaching the
memory hierarchy, which is nominally on core 0

• Reflects that there’s only one memory hierarchy, not one per core

Writing µSpec Axioms

▪A microarchitecture spec has three components:

• Stage identifier definitions

• Macro definitions (optional) for axiom decomposition and reuse

• Axiom definitions

▪Axioms are comprised of FOL operators and built-in predicates

▪ Some predicates deal with nodes and edges
• EdgeExists ((i1, Fetch), (i2, Fetch))

• NodeExists ((i1, Execute))

▪Other predicates represent architecture-level properties
• SameCore <instr1> <instr2>

• SamePhysicalAddress, SameData, IsAnyRead, ProgramOrder,…

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Memory Hierarchy

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

The Writes_Path Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i,(0,MemoryHierarchy)),

"path")].

SC_fillable.uarch, line 18

The Writes_Path Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i,(0,MemoryHierarchy)),

"path")].

Axiom

name

SC_fillable.uarch, line 18

The Writes_Path Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i,(0,MemoryHierarchy)),

"path")].

Microop: A single load/store op.

SC_fillable.uarch, line 18

The Writes_Path Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i,(0,MemoryHierarchy)),

"path")].

For all writes (IsAnyWrite predicate)

SC_fillable.uarch, line 18

The Writes_Path Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Stores go through the

pipeline stages and reach

memory in order

Memory Hierarchy

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i,(0,MemoryHierarchy)),

"path")].
Add edges from:

-Fetch to Execute

-Execute to Writeback

-Writeback to MemoryHierarchy

SC_fillable.uarch, line 18

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0
Loads go through the

pipeline stages in order

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writeback

Execute

Fetch

Core 0
Loads go through the

pipeline stages in order

Reads_Path Axiom is very similar

to Writes_Path axiom

(no WB→MemHier edge)

SC_fillable.uarch, line 26

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Edges added
according to
Reads_Path
axiom

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Edges added
according to
Writes_Path
axiom

Initially, Mem[x] = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Fetch

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
All instructions on the

same core go through

Fetch in program order

Fetch

The PO_Fetch Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
All instructions on the

same core go through

Fetch in program order

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO", "blue").

SC_fillable.uarch, line 32

The PO_Fetch Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
All instructions on the

same core go through

Fetch in program order

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO", "blue").

Predicates check that instrs are on

the same core and in program order

SC_fillable.uarch, line 32

The PO_Fetch Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
All instructions on the

same core go through

Fetch in program order

Fetch
Axiom "PO_Fetch":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ProgramOrder i1 i2 =>
AddEdge ((i1, Fetch), (i2, Fetch), "PO", "blue").

Add edge from Fetch stage of

earlier instruction i1 to Fetch

stage of later instruction i2

SC_fillable.uarch, line 32

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Edges Added Using
PO_Fetch axiom

Initially, Mem[x] = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Executei1

Fetchi1

Executei2

Fetchi2

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Fetch in order,

they will go through

Execute in the same

order

Executei1

Fetchi1

Executei2

Fetchi2

The Execute_Stage_Is_In_order Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
If two instructions on the

same core go through

Fetch in order, they will

go through Execute in the

same order

Execute

Fetch
Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

SC_fillable.uarch, line 38

The Execute_Stage_Is_In_order Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
If two instructions on the

same core go through

Fetch in order, they will

go through Execute in the

same order

Execute

Fetch
Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

If instructions i1 and i2

on same core go through

Fetch in order…

SC_fillable.uarch, line 38

The Execute_Stage_Is_In_order Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
If two instructions on the

same core go through

Fetch in order, they will

go through Execute in the

same order

Execute

Fetch
Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO").

…then they go through

Execute in the same order.

SC_fillable.uarch, line 38

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Fetchi1

Writebacki1

Fetchi2

Writebacki2

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Fetch in order,

they will go through

Writeback in the same

order

Fetchi1

Writebacki1

Fetchi2

Writebacki2

The Writeback_Stage_Is_In_Order Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
If two instructions on the

same core go through

Fetch in order, they will

go through Writeback in

the same order

Fetch

Writeback

Axiom "Writeback_stage_is_in_order":
forall microops "i1",
forall microops "i2",
________ i1 i2 /\
EdgeExists ((i1, _____), (i2, _____), "") =>
AddEdge ((i1, _________), (i2, _________), "PPO").

If two instructions on the same core go through Fetch in

order, they will go through Writeback in the same order

SC_fillable.uarch, line 55

The Writeback_Stage_Is_In_Order Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1
If two instructions on the

same core go through

Fetch in order, they will

go through Writeback in

the same order

Fetch

Writeback

Axiom "Writeback_stage_is_in_order":
forall microops "i1",
forall microops "i2",
________ i1 i2 /\
EdgeExists ((i1, _____), (i2, _____), "") =>
AddEdge ((i1, _________), (i2, _________), "PPO").

Axiom "Writeback_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Writeback), (i2, Writeback), "PPO").

If two instructions on the same core go through Fetch in

order, they will go through Writeback in the same order

SC_fillable.uarch, line 55

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Edges from
Execute_stage_is

_in_order &
Writeback_stage

_is_in_order
axioms

Initially, Mem[x] = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

Writebacki1 Writebacki2

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

All writes to the same

address must be totally

ordered at the Memory

Hierarchy.

(coherence order)

Writebacki1 Writebacki2

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

All writes to the same

address must be totally

ordered at the Memory

Hierarchy.

(coherence order)

Writebacki1 Writebacki2

i1: Store y=1 i2: Store y=2
OR

Coherence order:

The WriteSerialization Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Writeback in

order, they must reach

the Memory Hierarchy

in the same order

Writebacki1

Writebacki2

Memory Hierarchy

Axiom "WriteSerialization":
forall microops "i1",
forall microops "i2",
(~(SameMicroop i1 i2) /\ IsAnyWrite i1
/\ IsAnyWrite i2 /\ SamePhysicalAddress i1 i2) =>
(EdgeExists ((i1, (0,MemHier)), (i2, (0,MemHier))) \/
EdgeExists ((i2, (0,MemHier)), (i1, (0,MemHier)))).

SC_fillable.uarch, line 65

The WriteSerialization Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Writeback in

order, they must reach

the Memory Hierarchy

in the same order

Writebacki1

Writebacki2

Memory Hierarchy

Axiom "WriteSerialization":
forall microops "i1",
forall microops "i2",
(~(SameMicroop i1 i2) /\ IsAnyWrite i1
/\ IsAnyWrite i2 /\ SamePhysicalAddress i1 i2) =>
(EdgeExists ((i1, (0,MemHier)), (i2, (0,MemHier))) \/
EdgeExists ((i2, (0,MemHier)), (i1, (0,MemHier)))).

Two different writes to the

same address

SC_fillable.uarch, line 65

The WriteSerialization Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Writeback in

order, they must reach

the Memory Hierarchy

in the same order

Writebacki1

Writebacki2

Memory Hierarchy

Axiom "WriteSerialization":
forall microops "i1",
forall microops "i2",
(~(SameMicroop i1 i2) /\ IsAnyWrite i1
/\ IsAnyWrite i2 /\ SamePhysicalAddress i1 i2) =>
(EdgeExists ((i1, (0,MemHier)), (i2, (0,MemHier))) \/
EdgeExists ((i2, (0,MemHier)), (i1, (0,MemHier)))).

Either i1 is before i2 in

coherence order, OR vice-versa.

SC_fillable.uarch, line 65

µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

WriteSerialization axiom

µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

WriteSerialization axiom

Two solutions;

Each enumerated separately

µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4) (i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

WriteSerialization axiom

Two solutions;

Each enumerated separately

µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4) (i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

WriteSerialization axiom

Two solutions;

Each enumerated separately

µhb Graphs for co-mp Using Axioms

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4) (i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

WriteSerialization axiom

Two solutions;

Each enumerated separately

• PipeCheck examines all cases

• Will focus on left graph for clarity

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebacki1 Executei2

Memory Hierarchy

Executei1

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebacki1 Executei2

Memory Hierarchy

Executei1

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebacki1 Executei2

Memory Hierarchy

Executei1

A write must reach the

Memory Hierarchy

before memory

instructions on the same

core that are after the

write in program order.

(otherwise the write could

be reordered with later

writes or later reads)

The Enforce_Write_Ordering Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Writeback in

order, they must reach

the Memory Hierarchy

in the same order

Writebacki1

Writebacki2

Memory Hierarchy

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "i",
(__________ w /\ ____________ w i) =>

AddEdge ((w, (0, _______________)), (i, _______)).

A write must reach the Memory Hierarchy before

execution of memory instructions that are after the write

in program order.

SC_fillable.uarch, line 87

The Enforce_Write_Ordering Axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

If two instructions on

the same core go

through Writeback in

order, they must reach

the Memory Hierarchy

in the same order

Writebacki1

Writebacki2

Memory Hierarchy

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "i",
(__________ w /\ ____________ w i) =>

AddEdge ((w, (0, _______________)), (i, _______)).

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "i",
(IsAnyWrite w /\ ProgramOrder w i) =>

AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)).

A write must reach the Memory Hierarchy before

execution of memory instructions that are after the write

in program order.

SC_fillable.uarch, line 87

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Edge added by
Enforce_Write

_Ordering axiom

Initially, Mem[x] = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Executei

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebackw

Executei

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebackw

i: Load y=0

Executei

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebackw

w: Store y=1 i: Load y=0

Executei

Y = 1

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

SC_fillable.uarch, line 107

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

Macro: A µSpec fragment

that can be instantiated

as part of a larger axiom

SC_fillable.uarch, line 107

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

Check that i reads its value

from the initial state of the

litmus test

SC_fillable.uarch, line 107

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

If a load reads the initial value of a memory location, it

must execute before any write to that addr reaches Mem.

SC_fillable.uarch, line 107

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, Execute), (w, (0, MemoryHierarchy)))).

If a load reads the initial value of a memory location, it

must execute before any write to that addr reaches Mem.

SC_fillable.uarch, line 107

BeforeAllWrites Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1If a load reads the initial value

of a memory location, it must

execute before any write to

that location reaches Mem.

Writebacki1

w: Store y=1 i: Load y=0

Execute

Y = 0Y = 1

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, _______), (w, (0, _______________)))).

DefineMacro "BeforeAllWrites":
DataFromInitialStateAtPA i /\
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i
/\ ~SameMicroop i w) =>
AddEdge ((i, Execute), (w, (0, MemoryHierarchy)))).

Enforce that the load

executes before all writes

to its address in the test

If a load reads the initial value of a memory location, it

must execute before any write to that addr reaches Mem.

SC_fillable.uarch, line 107

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

Writebackw

Executei

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either

before or after any write to its

address reaches memory.

Writebackw

Executei

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either

before or after any write to its

address reaches memory.

Writebackw

w: Store y=val1 i: Load y=val2

Executei

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either

before or after any write to its

address reaches memory.

Writebackw

w: Store y=val1 i: Load y=val2

Executei

OR

The Before_Or_After_Every_SameAddrWrite Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either

before or after any write to its

address reaches memory.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute

OR

DefineMacro "Before_Or_After_Every_SameAddrWrite":
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i) =>
(AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)) \/
AddEdge ((i, Execute), (w, (0, MemoryHierarchy))))).

SC_fillable.uarch, line 118

The Before_Or_After_Every_SameAddrWrite Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Memory Hierarchy

A load must execute either

before or after any write to its

address reaches memory.

Writebacki1

w: Store y=val1 i: Load y=val2

Execute

OR

DefineMacro "Before_Or_After_Every_SameAddrWrite":
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i) =>
(AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)) \/
AddEdge ((i, Execute), (w, (0, MemoryHierarchy))))).

Either w reaches memory

before i executes, or vice-versa.

SC_fillable.uarch, line 118

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Executei

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Executei

A load must read from the latest write to that address to reach

memory.

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

Executei

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1

Executei

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 1

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Executei

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 1

Finding Axioms

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Executei

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 2

Writebackw’

w’: St y=2

The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, (0, MemHier)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

SC_fillable.uarch, line 135

The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, (0, MemHier)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

SC_fillable.uarch, line 135

The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, (0, MemHier)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

Read i executes after its source

write w reaches memory…

SC_fillable.uarch, line 135

The No_SameAddrWrites_Btwn_Src_And_Read Macro

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ ___________________ w i /\ ________ w i
/\ AddEdge ((w, (0, MemHier)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ ___________________ i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

DefineMacro "No_SameAddrWrites_Btwn_Src_And_Read":
exists microop "w", (
IsAnyWrite w /\ SamePhysicalAddress w i /\ SameData w i
/\ AddEdge ((w, (0, MemoryHierarchy)), (i, Execute)) /\
~(exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress i w’ /\
~SameMicroop w w’
/\ EdgesExist [((w, (0,MemHier)), (w', (0,MemHier)));

((w', (0,MemHier)), (i, Execute))])).

…and there are no writes w’ to

that addr between the source

write w and the read i.

SC_fillable.uarch, line 135

Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

SC_fillable.uarch, line 149

Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

For all reads i (same identifier

used in the macros)…

SC_fillable.uarch, line 149

Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

…either the read executes

before all writes (expand

macro defined earlier)…

SC_fillable.uarch, line 149

Putting the Macros together: the Read_Values axiom

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(ExpandMacro BeforeAllWrites \/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)).

…or the read reads from the

latest write to that address

SC_fillable.uarch, line 149

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i3 must be sourced
from the write i2

• No intervening
writes; constraint
satisfied

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i4 must be sourced
from i1

• But i2 intervenes!
=> Constraint
unsatisfiable

Initially, Mem[x] = 0

µhb Graphs for co-mp Using Axioms
Each column represents an instruction flowing

through the pipeline

(i1) (i2)

Fetch

Execute

Writeback

MemHier

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: Store [x]  2

i3: r1 = Load [x]
i4: r2 = Load [x]

SC Forbids: r1=2, r2=1, Mem[x] = 2

• i4 must be sourced
from i1

• But i2 intervenes!
=> Constraint
unsatisfiable

Initially, Mem[x] = 0

Cannot find an acyclic graph that satisfies all
constraints =>

Forbidden Execution of co-mp is NOT
observable on µarch!

Test your completed SC uarch!

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Assuming you are in ~/pipecheck_tutorial/uarches/
$ check -i ../tests/SC_tests/co-mp.test -m SC_fillable.uarch

If your uarch is valid, the above will create co-mp.pdf in your
current directory (open pdfs from command line with evince)
To run the solution version of the SC uarch on this test:
(Note: this will overwrite the co-mp.pdf in your current folder)
$ check -i ../tests/SC_tests/co-mp.test -m SC.uarch –d solutions/

If you get an error (cannot parse uarch, ps2pdf crashes, etc),
examine your syntax or ask for help.
If the outcome is observable (“BUG”), compare the graphs
generated by the solution uarch to those of your uarch.

To compare the uarches themselves:
$ diff SC_fillable.uarch solutions/SC.uarch

Run the entire suite of SC litmus tests!
Assuming you are in ~/pipecheck_tutorial/uarches/
$ run_tests –v 2 -t ../tests/SC_tests/ -m SC_fillable.uarch

The above will generate *.gv files in ~/pipecheck_tutorial/out/
for all SC tests, and output overall statistics at the end. If
the count for “Buggy” is non-zero, your uarch is faulty. Look for
the tests that output “BUG” to find out which tests fail.

You can use gen_graph to convert gv files into PDFs:
$ gen_graph –i <test_gv_file>

Compare your uarch with the solution SC uarch using diff to find
discrepancies:
$ diff SC_fillable.uarch solutions/SC.uarch

Coffee Break!

After the break: Extending SC uarch. to TSO

PipeCheck Hands-On Continued:

Extending SC uarch. to TSO

Hands-on: Moving from SC to TSO
▪Reads must currently wait for prior writes to reach memory

• EnforceWriteOrdering axiom

• Low performance!

▪Main motivation for TSO: store buffers to hide write latency

• Allow reads to be reordered with writes

▪Also want to allow reads to bypass value from store buffer (before
value made visible to other cores)

• Known as “read your own write early”

▪How to model this in µSpec?

Moving from SC to TSO

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Moving from SC to TSO

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Store

Buffer
Store

Buffer

Moving from SC to TSO

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Loads

can

bypass

from SB
Store

Buffer
Store

Buffer

Moving from SC to TSO

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Loads

can

bypass

from SB
Store

Buffer
Store

Buffer

Partially completed TSO uarch in
/home/check/pipecheck_tutorial/uarches/TSO_fillable.uarch
(i.e. ~/pipecheck_tutorial/uarches/TSO_fillable.uarch)

Some axioms remain the same from SC.uarch

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

Add StoreBuffer Stage

StageName _ "___________".
StageName _ "MemoryHierarchy".

▪ “StoreBuffer” stage is between Writeback and MemoryHierarchy

▪ Solution:

TSO_fillable.uarch, line 39

Add StoreBuffer Stage

StageName _ "___________".
StageName _ "MemoryHierarchy".

▪ “StoreBuffer” stage is between Writeback and MemoryHierarchy

▪ Solution:

StageName 3 "StoreBuffer".
StageName 4 "MemoryHierarchy".

TSO_fillable.uarch, line 39

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

Writes Go Through SB
▪Modify Writes_Path axiom so stores go WB → SB →MemHier

▪ Solution:

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, _________), (i, ___________), "path");
((i, ___________), (i, (0, _______________)),

"path")
].

TSO_fillable.uarch, line 55

Writes Go Through SB
▪Modify Writes_Path axiom so stores go WB → SB →MemHier

▪ Solution:

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, _________), (i, ___________), "path");
((i, ___________), (i, (0, _______________)),

"path")
].

Axiom "Writes_Path":
forall microops "i",
IsAnyWrite i =>
AddEdges [((i, Fetch), (i, Execute), "path");

((i, Execute), (i, Writeback), "path");
((i, Writeback), (i, StoreBuffer), "path");
((i, StoreBuffer), (i, (0, MemoryHierarchy)),

"path")
].

TSO_fillable.uarch, line 55

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

3. Ensure that same-core writes go through SB in order

Same-Core Writes Go Through SB in order

▪ If same-core writes go through WB in order, they should go through
SB in order too

▪Hint: Use Writeback_stage_is_in_order axiom as a starting point

▪ Solution:

Axiom "StoreBuffer_stage_is_in_order":
forall microops "i1",
forall microops "i2",
IsAnyWrite i1 /\ IsAnyWrite i2 /\ ________ i1 i2 =>
EdgeExists ((i1, _________), (i2, _________), "") =>
AddEdge ((i1, ___________), (i2, ___________), "PPO",
"darkgreen").

TSO_fillable.uarch, line 106

Same-Core Writes Go Through SB in order

▪ If same-core writes go through WB in order, they should go through
SB in order too

▪Hint: Use Writeback_stage_is_in_order axiom as a starting point

▪ Solution:

Axiom "StoreBuffer_stage_is_in_order":
forall microops "i1",
forall microops "i2",
IsAnyWrite i1 /\ IsAnyWrite i2 /\ ________ i1 i2 =>
EdgeExists ((i1, _________), (i2, _________), "") =>
AddEdge ((i1, ___________), (i2, ___________), "PPO",
"darkgreen").

Axiom "StoreBuffer_stage_is_in_order":
forall microops "i1",
forall microops "i2",
IsAnyWrite i1 /\ IsAnyWrite i2 /\ SameCore i1 i2 =>
EdgeExists ((i1, Writeback), (i2, Writeback), "") =>
AddEdge ((i1, StoreBuffer), (i2, StoreBuffer), "PPO",
"darkgreen").

TSO_fillable.uarch, line 106

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

3. Ensure that same-core writes go through SB in order

4. Enforce that write is released from SB only after all prior same-core
writes have reached memory

Same-Core Writes Reach Memory In Order

▪ For two same-core writes in program order, first write must reach
memory before second can leave store buffer

▪Hint: Axiom should only apply to pairs of writes!

▪ Solution:

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "w'",
(IsAnyWrite w /\ __________ w' /\ ____________ w w') =>
AddEdge ((w, (0, _______________)), (w', ___________),
"one_at_a_time", "green").

TSO_fillable.uarch, line 141

Same-Core Writes Reach Memory In Order

▪ For two same-core writes in program order, first write must reach
memory before second can leave store buffer

▪Hint: Axiom should only apply to pairs of writes!

▪ Solution:

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "w'",
(IsAnyWrite w /\ __________ w' /\ ____________ w w') =>
AddEdge ((w, (0, _______________)), (w', ___________),
"one_at_a_time", "green").

Axiom "EnforceWriteOrdering":
forall microop "w",
forall microop "w'",
(IsAnyWrite w /\ IsAnyWrite w' /\ ProgramOrder w w') =>
AddEdge ((w, (0, MemoryHierarchy)), (w’, StoreBuffer),
"one_at_a_time", "green").

TSO_fillable.uarch, line 141

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

3. Ensure that same-core writes go through SB in order

4. Enforce that write is released from SB only after all prior same-core
writes have reached memory

5. Ensure that if load is reading from memory, that core’s store buffer
has no entries for address of load

Only read from Mem if SB has no same addr writes

▪Create a macro enforcing that all writes before instr “i” in program
order to address of “i” have reached mem before “i” Executes

▪ Solution:
DefineMacro "STBEmpty":
% Store buffer is empty for the address we want to read.
forall microop "w", (
(__________ w /\ ___________________ w i /\
____________ w i) =>
AddEdge ((w, (0, _______________)), (i, _______),

"STBEmpty", "purple")).

TSO_fillable.uarch, line 169

Only read from Mem if SB has no same addr writes

▪Create a macro enforcing that all writes before instr “i” in program
order to address of “i” have reached mem before “i” Executes

▪ Solution:
DefineMacro "STBEmpty":
% Store buffer is empty for the address we want to read.
forall microop "w", (
(__________ w /\ ___________________ w i /\
____________ w i) =>
AddEdge ((w, (0, _______________)), (i, _______),

"STBEmpty", "purple")).

DefineMacro "STBEmpty":
% Store buffer is empty for the address we want to read.
forall microop "w", (
(IsAnyWrite w /\ SamePhysicalAddress w i /\
ProgramOrder w i) =>
AddEdge ((w, (0, MemoryHierarchy)), (i, Execute),

"STBEmpty", "purple")).

TSO_fillable.uarch, line 169

Only read from Mem if SB has no same addr writes

▪Now expand the macro in Read_Values axiom to ensure that SB
has no entries for a load’s address if it is reading from memory

TSO_fillable.uarch, line 226

Only read from Mem if SB has no same addr writes

▪Now expand the macro in Read_Values axiom to ensure that SB
has no entries for a load’s address if it is reading from memory

Axiom "Read_Values":
forall microops "i",
IsAnyRead i => (
% Uncomment the commented lines if you add the (advanced) store buff forwarding.
% ExpandMacro ______ \/
% (

ExpandMacro ________ /\
(

ExpandMacro BeforeAllWrites
\/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

%)
).

TSO_fillable.uarch, line 226

Only read from Mem if SB has no same addr writes

▪Now expand the macro in Read_Values axiom to ensure that SB
has no entries for a load’s address if it is reading from memory

Axiom "Read_Values":
forall microops "i",
IsAnyRead i => (
% Uncomment the commented lines if you add the (advanced) store buff forwarding.
% ExpandMacro ______ \/
% (

ExpandMacro ________ /\
(

ExpandMacro BeforeAllWrites
\/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

%)
).

Axiom "Read_Values":
forall microops "i",
IsAnyRead i => (
% Uncomment the commented lines if you add the (advanced) store buff forwarding.
% ExpandMacro ______ \/
% (

ExpandMacro STBEmpty /\
(

ExpandMacro BeforeAllWrites
\/
(
ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

%)
).

TSO_fillable.uarch, line 226

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

3. Ensure that same-core writes go through SB in order

4. Enforce that write is released from SB only after all prior same-core
writes have reached memory

5. Ensure that if load is reading from memory, that core’s store buffer has
no entries for address of load

6. (Advanced) Allow a core to read value of a write from its store
buffer before write is made visible to other cores

Forward Value from SB (Advanced)

▪Create a macro that checks for a write on the same core to
forward from (Execute stage -> Execute stage), and ensures the
forwarding occurs before the write reaches memory

▪Macro must also check that forwarding occurs from the latest
write in program order (no intervening writes)

▪ Solution:

TSO_fillable.uarch, line 269

Forward Value from SB (Advanced)

▪Create a macro that checks for a write on the same core to
forward from (Execute stage -> Execute stage), and ensures the
forwarding occurs before the write reaches memory

▪Macro must also check that forwarding occurs from the latest
write in program order (no intervening writes)

▪ Solution:

DefineMacro "STBFwd":
% Forward from the store buffer
exists microop "w", (

__________ w /\
________ w i /\
___________________ w i /\
________ w i /\
AddEdges [((w, Execute), (i, Execute), "STBFwd", "red");

((i, Execute), (w, (0, MemoryHierarchy)), "STBFwd",
"purple")]) /\

% Ensure the STB entry is the latest one.
~exists microop "w'",
__________ w' /\ ___________________ w w' /\
____________ w w' /\ ____________ w' i.

TSO_fillable.uarch, line 269

Forward Value from SB (Advanced)

▪Create a macro that checks for a write on the same core to
forward from (Execute stage -> Execute stage), and ensures the
forwarding occurs before the write reaches memory

▪Macro must also check that forwarding occurs from the latest
write in program order (no intervening writes)

▪ Solution:

DefineMacro "STBFwd":
% Forward from the store buffer
exists microop "w", (

__________ w /\
________ w i /\
___________________ w i /\
________ w i /\
AddEdges [((w, Execute), (i, Execute), "STBFwd", "red");

((i, Execute), (w, (0, MemoryHierarchy)), "STBFwd",
"purple")]) /\

% Ensure the STB entry is the latest one.
~exists microop "w'",
__________ w' /\ ___________________ w w' /\
____________ w w' /\ ____________ w' i.

DefineMacro "STBFwd":
% Forward from the store buffer
exists microop "w", (

IsAnyWrite w /\
SameCore w i /\
SamePhysicalAddress w i /\
SameData w i /\
AddEdges [((w, Execute), (i, Execute), "STBFwd", "red");

((i, Execute), (w, (0, MemoryHierarchy)), "STBFwd",
"purple")]) /\

% Ensure the STB entry is the latest one.
~exists microop "w'",
IsAnyWrite w' /\ SamePhysicalAddress w w' /\
ProgramOrder w w' /\ ProgramOrder w' i.

TSO_fillable.uarch, line 269

Forward Value from SB
▪Expand the macro in the Read_Values axiom so that forwarding

from the SB is an alternative choice to reading from memory

▪Remember to uncomment lines 231-232, and line 243!

▪ Solution:

TSO_fillable.uarch, line 226

Forward Value from SB
▪Expand the macro in the Read_Values axiom so that forwarding

from the SB is an alternative choice to reading from memory

▪Remember to uncomment lines 231-232, and line 243!

▪ Solution:

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(
ExpandMacro ______ \/
(

ExpandMacro STBEmpty /\
(

ExpandMacro BeforeAllWrites
\/
(

ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

)
).

TSO_fillable.uarch, line 226

Forward Value from SB
▪Expand the macro in the Read_Values axiom so that forwarding

from the SB is an alternative choice to reading from memory

▪Remember to uncomment lines 231-232, and line 243!

▪ Solution:

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(
ExpandMacro ______ \/
(

ExpandMacro STBEmpty /\
(

ExpandMacro BeforeAllWrites
\/
(

ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

)
).

Axiom "Read_Values":
forall microops "i",
IsAnyRead i =>
(
ExpandMacro STBFwd \/
(

ExpandMacro STBEmpty /\
(

ExpandMacro BeforeAllWrites
\/
(

ExpandMacro No_SameAddrWrites_Btwn_Src_And_Read
/\
ExpandMacro Before_Or_After_Every_SameAddrWrite

)
)

)
).

TSO_fillable.uarch, line 226

Hands-on: Moving from SC to TSO
▪7 changes needed to SC.uarch:

1. Add store buffer stage

2. Make writes go through SB before memory

3. Ensure that same-core writes go through SB in order

4. Enforce that write is released from SB only after all prior same-core
writes have reached memory

5. Ensure that if load is reading from memory, that core’s store buffer has
no entries for address of load

6. (Advanced) Allow a core to read value of a write from its store buffer
before write is made visible to other cores

7. Implement fence operation that flushes all prior writes to memory
before any succeeding instructions can perform

Fence Instruction Orders Write-Read pairs

▪Add a fence instruction that flushes all prior writes in program
order to memory before the fence's execute stage

▪ Solution:

TSO_fillable.uarch, line 300

Fence Instruction Orders Write-Read pairs

▪Add a fence instruction that flushes all prior writes in program
order to memory before the fence's execute stage

▪ Solution:

TSO_fillable.uarch, line 300

Axiom "Fence_Ordering":
forall microops "f",
IsAnyFence f =>
AddEdges [((f, Fetch), (f, Execute), "path");

((f, Execute), (f, Writeback), "path")]
/\
(
forall microops "w",
(__________ w /\ ____________ w f) =>
AddEdge ((w, (0, _______________)), (f, _______),

"fence", "orange")
).

Fence Instruction Orders Write-Read pairs

▪Add a fence instruction that flushes all prior writes in program
order to memory before the fence's execute stage

▪ Solution:

TSO_fillable.uarch, line 300

Axiom "Fence_Ordering":
forall microops "f",
IsAnyFence f =>
AddEdges [((f, Fetch), (f, Execute), "path");

((f, Execute), (f, Writeback), "path")]
/\
(
forall microops "w",
(__________ w /\ ____________ w f) =>
AddEdge ((w, (0, _______________)), (f, _______),

"fence", "orange")
).

Axiom "Fence_Ordering":
forall microops "f",
IsAnyFence f =>
AddEdges [((f, Fetch), (f, Execute), "path");

((f, Execute), (f, Writeback), "path")]
/\
(
forall microops "w",
(IsAnyWrite w /\ ProgramOrder w f) =>
AddEdge ((w, (0, MemoryHierarchy)), (f, Execute),

"fence", "orange")
).

Initially, Mem[x] = Mem[y] = 0

µhb Graph for sb On TSO µarch.

(i1) (i2)

Fetch

Execute

Writeback

StoreBuffer

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: r1 = Load [y]

i3: Store [y] 1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

MemHier

Initially, Mem[x] = Mem[y] = 0

µhb Graph for sb On TSO µarch.

(i1) (i2)

Fetch

Execute

Writeback

StoreBuffer

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: r1 = Load [y]

i3: Store [y] 1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

MemHier

Dotted green
edges order writes
before later reads
in our SC µarch.

These edges are
not present in our

TSO µarch!

Initially, Mem[x] = Mem[y] = 0

µhb Graph for sb On TSO µarch.

(i1) (i2)

Fetch

Execute

Writeback

StoreBuffer

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: r1 = Load [y]

i3: Store [y] 1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

MemHier

Dotted green
edges order writes
before later reads
in our SC µarch.

These edges are
not present in our

TSO µarch!

Initially, Mem[x] = Mem[y] = 0

µhb Graph for sb On TSO µarch.

(i1) (i2)

Fetch

Execute

Writeback

StoreBuffer

(i3) (i4)

Thread 0 Thread 1

i1: Store [x] 1
i2: r1 = Load [y]

i3: Store [y] 1
i4: r2 = Load [x]

SC Forbids: r1=0, r2=0

MemHier

Dotted green
edges order writes
before later reads
in our SC µarch.

These edges are
not present in our

TSO µarch!

Loads no longer need to wait for prior writes
to reach memory => acyclic graph

sb is observable on TSO µarch!

Test your completed TSO uarch!

Memory Hierarchy

Writeback

Execute

Fetch

Core 0

Writeback

Execute

Fetch

Core 1

Writebackw

w: St y=1 i: Load y=1

Execute

A load must read from the latest write to that address to reach

memory.

Alternatively:

1) The load must execute after the write it reads from

2) No writes to that address between the source write and the read

Y = 0Y = 1Y = 2

Writebackw’

w’: St y=2

Assuming you are in ~/pipecheck_tutorial/uarches/
$ check -i ../tests/TSO_tests/sb.test -m TSO_fillable.uarch

If your uarch is valid, the above will create sb.pdf in your
current directory (open pdfs from command line with evince)
To run the solution version of the TSO uarch on this test:
(Note: this will overwrite the sb.pdf in your current folder)
$ check -i ../tests/TSO_tests/sb.test -m TSO.uarch –d solutions/

If you get an error (cannot parse uarch, ps2pdf crashes, etc),
examine your syntax or ask for help.
If the outcome is not observable (“Strict”), compare the graphs
generated by the solution uarch to those of your uarch.

To compare the uarches themselves:
$ diff TSO_fillable.uarch solutions/TSO.uarch

Run the entire suite of TSO litmus tests!
Assuming you are in ~/pipecheck_tutorial/uarches/
$ run_tests –v 2 -t ../tests/TSO_tests/ -m TSO_fillable.uarch

The above will generate *.gv files in ~/pipecheck_tutorial/out/
for all TSO tests, and output overall statistics at the end. If
the count for “Buggy” is non-zero, your uarch is faulty. Look for
the tests that output “BUG” to find out which tests fail.

You can use gen_graph to convert gv files into PDFs:
$ gen_graph –i <test_gv_file>

Compare your uarch with the solution TSO uarch using diff to find
discrepancies:
$ diff TSO_fillable.uarch solutions/TSO.uarch

PipeCheck Verification Time

0.01

0.1

1

sa
fe

0
29 ss

l
rf

i0
01 m

p
rf

i0
02

rf
i0

04
sa

fe
0

10
sa

fe
0

30
sa

fe
0

22
iw

p
2

8
b

te
st

an
d

se
t lb

sa
fe

0
33

sa
fe

0
36

sa
fe

0
04

sa
fe

0
06

rf
i0

07 n
5

te
st

an
d

se
t2

iw
p

2
3

b sb
sa

fe
0

17
p

o
d

w
r0

0
0

am
d

5
rf

i0
08

sa
fe

0
18 w
rc

co
-m

p
sa

fe
0

02
sa

fe
0

31
sa

fe
0

09
sa

fe
0

05
m

p
+f

en
ce

s
sa

fe
0

20
m

p
+s

ta
le

ld
rf

i0
00

sa
fe

0
07

te
st

an
d

se
t3

sa
fe

0
03 n

6
sa

fe
0

14
sa

fe
0

12
rf

i0
16

rf
i0

12
sa

fe
0

32
rw

c-
u

n
fe

n
ce

d
sa

fe
0

11
iw

p
2

8
a

sa
fe

0
01

sa
fe

0
26

sa
fe

0
00 n

8
sa

fe
0

08
sa

fe
0

34
rf

i0
13

sa
fe

0
27

rw
c-

fe
n

ce
d

rf
i0

17 ir
iw

iw
p

2
4

sa
fe

0
21

rf
i0

14
sa

fe
0

16 n
4

sa
fe

0
15

sa
fe

0
13

rf
i0

18
rf

i0
11

rf
i0

05
am

d
1

0
sa

fe
0

28
rf

i0
15

p
o

d
w

r0
0

1
sa

fe
0

35
sa

fe
0

37
am

d
3

n
7

rf
i0

06 n
1

co
-i

ri
w

sa
fe

0
24

rf
i0

03
sa

fe
0

25
sa

fe
0

23
sa

fe
0

19
rf

i0
09

rf
i0

10 n
3

iw
p

2
7

n
2

R
u

n
ti

m
e

(s
)

FiveStage (No SB) FiveStage (w/ SB) gem5 O3 OpenSPARC T2

Covered the basics of what PipeCheck can do…

▪But there’s more!

▪PipeCheck can handle heterogeneous pipelines:

Covered the basics of what PipeCheck can do…

▪…and microarchitectural optimizations…

Left: Speculative
Load Reordering

Right: Speculative
Fence Retirement

Covered the basics of what PipeCheck can do…

▪…and the methodology is extensible to other types of orderings!

CCICheck: Coherence orderings
that affect consistency

COATCheck: Addr Translation/Virtual
Memory orderings that affect consistency

Does the µspec model match hardware?

▪RTLCheck: Validate that hardware supports µspec axioms!

Axiomatic
Microarch.

Verification

Temporal
RTL Verification

(SVA, etc)

Core[0].DX

Core[0].WB

Core[1].DX

Core[1].WB

clk

Core[1].LData

St x

St x

St y

St y

Ld y

Ld y

Ld x

Ld x

0x1 0x1

Core[0].SData 0x1 0x1

2 3 4 5 6 7

Abstract nodes
and happens-
before edges

Concrete
signals and
clock cycles

PipeCheck Summary

▪ Fast, automated verification

▪Check hardware implementation against ISA spec

▪Decompose HW verification into smaller per-axiom sub-problems

• Each axiom can then be each validated w.r.t RTL independently

▪Open-Sourced:

https://github.com/daniellustig/coatcheck

Repo from this tutorial:

https://github.com/ymanerka/pipecheck_tutorial

https://github.com/daniellustig/coatcheck
https://github.com/ymanerka/pipecheck_tutorial

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Princeton University *NVIDIA

ASPLOS 2017

Caroline Trippel, Yatin A. Manerkar, Daniel Lustig*,
Michael Pellauer*, Margaret Martonosi

TriCheck: Memory Model Verification at the
Trisection of Software, Hardware, and ISA

http://check.cs.princeton.edu/

Why is TriCheck Necessary?

▪Memory model bugs are real and problematic!

• ARM Read-after-Read Hazard [Alglave et al. TOPLAS14]

• RISC-V ISA draft specification was incompatible with C11

• C11→POWER/ARMv7 “trailing-sync” compiler mapping [Batty et al. POPL ‘12]

• C11→POWER/ARMv7 “leading-sync” compiler mapping [Lahav et al. PLDI17]

▪ ISAs are an important and still-fluid design point!

• Often, ISAs designed in light of desired HW optimizations

• ISA places some constraints on hardware and some on compiler

• Many industry memory models are still evolving: C11, ARMv7 vs. ARMv8

• New ISAs are designed, e.g., RISC-V CPUs, specialized accelerators

▪ Correctness requires cooperation of the whole stack

This work

TriCheck Key Ideas

▪ First tool capable of full stack memory model verification

• Any layer can introduce real bugs

▪ Litmus Tests + Auto-generators

• Comprehensive families of tests across HLL ordering options, compiler
mapping variations, ISA options

▪Happens-before, graph-based analysis

• Nodes are memory accesses & ordering primitives

• Edges are event orders discerned via memory model relations

▪Efficient top-to-bottom analysis: Runtime in seconds or minutes

• Fast enough to find real bugs; Interactive design process

Relax the TSO μspec
model to permit R→R
reordering

Write a HLL litmus
test template

TriCheck Overview

HLL	litmus	test	templates

Litmus	Test	Generator
HLL	Memory	Model	
Simulator	(Herd)

User-defined	inputs

HLL	Memory	Model

HLL	à ISA
Compiler	Mappings

ISA	μSpec	Model

Refine	inputs	if	
necessary/desired

Refined
HLL	Memory	Model

Refined
HLL	à ISA

Compiler	Mappings

Refined
ISA	μSpec	Model

Auto-generated	HLL	litmus	tests

HLL	Litmus	Test
Template

HLL	Litmus	Test

TriCheck

BUGS.txt	
Strict.txt

Define a set of HLL → ISA
compiler mappings

Refine if
bugs

Outline

▪TriCheck Introduction

▪Auto-generating HLL litmus tests

▪User-defined TriCheck inputs

▪ Iterative ISA design example

▪Bugs Found with TriCheck: RISC-V Case Study and Compiler Mappings

▪Ongoing Work & Conclusions
NOTE: Before running TriCheck, define the $TRICHECK_HOME environment variable and
install the parallel utility:

sudo apt-get update
export TRICHECK_HOME=/home/check/TriCheck
sudo apt-get install parallel

Auto-generating HLL litmus tests

HLL	litmus	test	templates

Litmus	Test	Generator
HLL	Memory	Model	
Simulator	(Herd)

User-defined	inputs

HLL	à ISA
Compiler	Mappings

ISA
Memory	Model

ISA	μSpec	Model

Refine	inputs	if	
necessary/desired

Refined
HLL	à ISA

Compiler	Mappings

Refined
ISA

Memory	Model

Refined
ISA	μSpec	Model

Auto-generated	HLL	litmus	tests

HLL	Litmus	Test
Template

HLL	Litmus	Test

TriCheck

BUGS.txt	
Strict.txt

▪ Auto-generated TriCheck inputs

• HLL litmus test suite from templates

Litmus test templates

▪HLL is generally meant to compile/map to a variety of ISAs

• For a given litmus test, we want to evaluate all possible HLL-level
formulations and ordering options

• Translates to evaluating a variety of compiler mapping and ISA options

▪HLL litmus tests with placeholders for HLL-specific memory model
ordering primitives

▪E.g., C11 features the atomic type and allows programmers to place
ordering constraints on memory accesses to atomic variables

− Stores to atomic variables can be specified as relaxed, release, or seq_cst

− Loads of atomic variables can be specified as relaxed, acquire*, or seq_cst

▪ Litmus test templates path: $TRICHECK_HOME/tests/templates

* Omitting consume

$TRICHECK_HOME/tests/templates/mp.litmus
C <TEST>

{

[x] = 0;

[y] = 0;

}

P0 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(x,1,memory_order_<ORDER_STORE>);

atomic_store_explicit(y,1,memory_order_<ORDER_STORE>);

}

P1 (atomic_int* y, atomic_int* x) {

int r0 = atomic_load_explicit(y,memory_order_<ORDER_LOAD>);

int r1 = atomic_load_explicit(x,memory_order_<ORDER_LOAD>);

}

exists (0:r0=1 /\ 1:r1=0)

Message Passing (MP)

T0 T1

W x  1 R y  1

W y  1 R x  0

Non-SC Outcome
Forbidden

Processor/Core ID

Exercise: $TRICHECK_HOME/tests/templates/sb.litmus
C <TEST>

{

[x] = 0;

[y] = 0;

}

P0 (atomic_int* y, atomic_int* x) {

// store to x

int r0 = // load of y

}

P1 (atomic_int* y, atomic_int* x) {

// store to y

int r1 = // load of x

}

exists ()

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y  0 R x  0

Non-SC Outcome
Permitted

Solution: $TRICHECK_HOME/tests/templates/sb.litmus
C <TEST>

{

[x] = 0;

[y] = 0;

}

P0 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(x,1,memory_order_<ORDER_STORE>);

int r0 = atomic_load_explicit(y,memory_order_<ORDER_LOAD>);

}

P1 (atomic_int* y, atomic_int* x) {

atomic_store_explicit(y,1,memory_order_<ORDER_STORE>);

int r1 = atomic_load_explicit(x,memory_order_<ORDER_LOAD>);

}

exists (0:r0=0 /\ 1:r1=0)

Store Buffering (SB)

P0 P1

W x  1 W y  1

R y  0 R x  0

Non-SC Outcome
Permitted

Outline

▪TriCheck Introduction

▪Auto-generating HLL litmus tests

▪User-defined TriCheck inputs

▪ Iterative ISA design example

▪Bugs Found with TriCheck: RISC-V Case Study and Compiler Mappings

▪Ongoing Work & Conclusions

User-defined Inputs

HLL	litmus	test	templates

Litmus	Test	Generator
HLL	Memory	Model	
Simulator	(Herd)

User-defined	inputs

HLL	Memory	Model

HLL	à ISA
Compiler	Mappings

ISA	μSpec	Model

Refine	inputs	if	
necessary/desired

Refined
HLL	Memory	Model

Refined
HLL	à ISA

Compiler	Mappings

Refined
ISA	μSpec	Model

Auto-generated	HLL	litmus	tests

HLL	Litmus	Test
Template

HLL	Litmus	Test

TriCheck

BUGS.txt	
Strict.txt

▪ Auto-generated TriCheck inputs

• HLL litmus test suite from templates

▪User-defined TriCheck inputs

• HLL memory model (Herd [Alglave et al. TOPLAS14])

− C11 Herd model [Batty et al. POPL16]

• HLL→ISA compiler mappings

• Hardware model (μspec DSL)

User-defined input #1: HLL memory model

▪ For this tutorial, we will use the C11 HLL memory model, written in
herd syntax from [Batty et al., POPL16]

▪C11 herd model path: $TRICHECK_HOME/util/herd/c11_partialSC.cat

User-defined inputs #2 & #3: ISA

▪ ISA is a contract between hardware and software

▪ Sliding lever between what is required by compiler and what is
required by microarchitecture

▪TriCheck represents ISA as an input through:

• Compiler mappings

• Hardware model

User-defined input #3: Hardware model

▪Hardware model so we know primitives to use in compiler
mappings

▪Default TriCheck uarches path: $TRICHECK_HOME/uarches

▪Exercise: open $TRICHECK_HOME/uarches /TSO-RR.uarch

• Relax Ld-Ld order

• Enforce Ld-Ld order only for dependent operations

− Address dependencies – affect Ld-Ld, Ld-St

− Data dependencies – affect Ld-St

− Control dependencies – affect Ld-Ld, Ld-St

1. Modify Execute_stage_is_in_order axiom

▪Modify axiom to permit Ld-Ld reordering:

“Execute stage is in order for all pairs of operations except two reads”

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ~(____________ /\ ____________) /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO", "darkgreen").

TSO-RR.uarch, line 57

1. Modify Execute_stage_is_in_order axiom

▪Modify axiom to permit Ld-Ld reordering:

“Execute stage is in order for all pairs of operations except two reads”

Axiom "Execute_stage_is_in_order":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ~(IsAnyRead i1 /\ IsAnyRead i2) /\
EdgeExists ((i1, Fetch), (i2, Fetch), "") =>
AddEdge ((i1, Execute), (i2, Execute), "PPO", "darkgreen").

TSO-RR.uarch, line 57

2. Enforce dependency order by default

Axiom "Addr_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ____________ /\ ____________ /\ HasDependency addr i1 i2 =>

AddEdge ((i1, _______), (i2, _______), "addr_rr_dependency").

Axiom "CtrlIsb_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ ____________ /\ ____________ /\ HasDependency ctrlisb i1 i2 =>

AddEdge ((i1, _______), (i2, _______), "ctrlisb").

▪ Relaxing Ld-Ld order requires axioms for address (addr) and control (ctrlisb)
dependencies

• Make use of HasDependency <addr|data|ctrl|ctrlisb> <i1> <i2> predicate

“If two reads are related by a dependency of type <addr|ctrlisb>, they must execute in order”

TSO-RR.uarch, line 196

2. Enforce dependency order by default
▪ Relaxing Ld-Ld order requires axioms for address (addr) and control (ctrlisb)

dependencies

• Make use of HasDependency <addr|data|ctrl|ctrlisb> <i1> <i2> predicate

“If two reads are related by a dependency of type <addr|ctrlisb>, they must execute in order”

Axiom "Addr_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ IsAnyRead i1 /\ IsAnyRead i2 /\ HasDependency addr i1 i2 =>

AddEdge ((i1, Execute), (i2, Execute), "addr_rr_dependency").

Axiom "CtrlIsb_Read_Read_Dependencies":
forall microops "i1",
forall microops "i2",
SameCore i1 i2 /\ IsAnyRead i1 /\ IsAnyRead i2 /\ HasDependency ctrlisb i1 i2 =>

AddEdge ((i1, Execute), (i2, Execute), "ctrlisb").

TSO-RR.uarch, line 196

User-defined input #2: HLL → ISA compiler mappings

▪Compiler mappings have been proven correct for C11 to x86-TSO

▪Path to compiler mappings file: $TRICHECK_HOME/util/compile.txt

https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

C/C++11 Operation X86-TSO implementation

Load Relaxed: MOV

Load Acquire: MOV

Load Seq_Cst: MOV

Store Relaxed: MOV

Store Release: MOV

Store Seq Cst: MOV, MFENCE

User-defined input #2: HLL → ISA compiler mappings

▪This is how we would specify the C11 to TSO.uarch compiler
mappings in compile.txt:

C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | NA
Write relaxed | NA | NA
Read acquire | NA | NA
Write release | NA | NA
Read seq_cst | NA | NA
Write seq_cst | NA | MMFENCE

User-defined input #2: HLL → ISA compiler mappings

▪Exercise: Modify these mappings for our new TSO-RR.uarch that
relaxes Read→Read ordering.

• Hint: Load Acquire and Load Seq_Cst require Read→Read order.

C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | NA
Write relaxed | NA | NA
Read acquire | NA | NA
Write release | NA | NA
Read seq_cst | NA | NA
Write seq_cst | NA | MMFENCE

User-defined input #2: HLL → ISA compiler mappings

▪ Solution: Modify these mappings for our new TSO-RR.uarch that
relaxes Read→Read ordering.

• Hint: Load Acquire and Load Seq_Cst require Read→Read order.

C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | NA
Write relaxed | NA | NA
Read acquire | NA | MMFENCE
Write release | NA | NA
Read seq_cst | NA | MMFENCE
Write seq_cst | NA | MMFENCE

Outline

▪TriCheck Introduction

▪Auto-generating HLL litmus tests

▪User-defined TriCheck inputs

▪ Iterative ISA design example

▪Bugs Found with TriCheck: RISC-V Case Study and Compiler Mappings

▪Ongoing Work & Conclusions

Run TriCheck On Inputs

▪ cd $TRICHECK_HOME/util

▪ ./release-generate-tests.py --all --fences

▪ ./release-run-all.py --pipecheck=/home/check/pipecheck_tutorial/src

Path to litmus test generator: $TRICHECK_HOME/util/release-generate-tests.py
Path to TriCheck: $TRICHECK_HOME/util/release-run-all.py

User-defined Inputs

HLL	litmus	test	templates

Litmus	Test	Generator
HLL	Memory	Model	
Simulator	(Herd)

User-defined	inputs

HLL	Memory	Model

HLL	à ISA
Compiler	Mappings

ISA	μSpec	Model

Refine	inputs	if	
necessary/desired

Refined
HLL	Memory	Model

Refined
HLL	à ISA

Compiler	Mappings

Refined
ISA	μSpec	Model

Auto-generated	HLL	litmus	tests

HLL	Litmus	Test
Template

HLL	Litmus	Test

TriCheck

BUGS.txt	
Strict.txt

▪ Each iteration: bugs analyzed to identify cause

• Compiler bug, hardware implementation bug, ISA bug

• Blame may be debated

• Blame != Fix

Create BUG.txt and Strict.txt

▪ cd $TRICHECK_HOME/util

▪ ./release-parse-results.py

▪ cat $TRICHECK_HOME/util/results/TSO-RR.uarch/BUG.txt

Path to TriCheck output parser: $TRICHECK_HOME/util/release-parse-results.py

Create BUG.txt and Strict.txt

▪ cd $TRICHECK_HOME/util

▪ ./release-parse-results.py

▪ cat $TRICHECK_HOME/util/results/TSO-RR.uarch/BUG.txt

Bugs exist, so we must refine some combination of inputs and rerun…

Analyzing a bug
▪ cd $TRICHECK_HOME/util/results/TSO-RR.uarch/corr

▪ gen_graph -i corr_R_relaxed_fence_acquire_fence_W_relaxed_fence_relaxed_fence.test.gv

▪ evince corr_R_relaxed_fence_acquire_fence_W_relaxed_fence_relaxed_fence.test.pdf

C11 requires that all same-
address reads of atomic
locations execute in order.

ARM Read-Read Hazard

Microarchitecture

ISA
Memory Model

Software
Memory Model

Compilation

Hardware Implementation

T0 T1

st(data,1,rlx) st(data,2,rlx)

r1=ld(*ptr,rlx)

r2=ld(data,rlx)

Two loads of the
same address

Initial conditions: data=0, atomic *ptr=&data
Forbidden by C11: r1=2, r2=1

ARM Cortex-A9

C0 C1

ST [data]1 ST [data]2

LD [ptr]→r0

LD [r0]→r1

LD [data]→r2

Forbidden outcome
observable on Cortex-A9

C11/C++11 ARMv7

st(rlx) STR

ld(rlx) LDR

ld(acq) LDR; DMB

… …

Fixing the bug…

▪ARM fixed the bug by modifying the compiler, so we’ll do the same
thing here…

▪Modify compiler mapping in $TRICHECK_HOME/util/compile.txt

C/C++11 Operation TSO-RR implementation

Load Relaxed: Read, MMFENCE

Load Acquire: Read, MMFENCE

Load Seq_Cst: Read, MMFENCE

Store Relaxed: Write

Store Release: Write

Store Seq Cst: Write, MMFENCE

C11/C++11 op | prefix;prefix | suffix;suffix
Read relaxed | NA | MMFENCE
Write relaxed | NA | NA
Read acquire | NA | MMFENCE
Write release | NA | NA
Read seq_cst | NA | MMFENCE
Write seq_cst | NA | MMFENCE

Run TriCheck On Refined Inputs

▪ cd $TRICHECK_HOME/util

▪ rm –r $TRICHECK_HOME/util/tests/ctests/*/pipecheck

▪ ./release-generate-tests.py --all --fences

▪ ./release-run-all.py --pipecheck=/home/check/pipecheck_tutorial/src

▪ ./release-parse-results.py

▪ cat $TRICHECK_HOME/util/results/TSO-RR.uarch/BUG.txt

Outline

▪TriCheck Introduction

▪Auto-generating HLL litmus tests

▪User-defined TriCheck inputs

▪ Iterative ISA design example

▪Bugs Found with TriCheck: RISC-V Case Study and Compiler Mappings

▪Ongoing Work & Conclusions

RISC-V Case Study

▪ Create μspec models for 7 distinct RISC-V implementation possibilities:

• All abide by current RISC-V spec

• Vary in preserved program order and store atomicity

▪ Started with stricter-than-spec microarchitecture: RISC-V Rocket Chip

• TriCheck detects bugs: refine for correctness

• TriCheck detects over-strictness: Performed legal (per RISC-V spec) hardware
relaxations

▪ Impossible to compile C11 for RISC-V as originally specified

▪Out of 1,701 tested C11 programs:

• RISC-V-Base-compliant design allows 144 buggy outcomes

• RISC-V-Base+A-compliant design allows 221 buggy outcomes

0

50

100

150

200

250

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9
lik
e
	

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9
lik
e
	

riscv-curr riscv-ours

wrc

RISC-V	Baseline	(Base)

Te
st
	V
a
ri
a
ti
on
s

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

RISC-V Base: Lack of
Cumulative Fences

C11 acquire/release synchronization is transitive: accesses before a
release write in program order, and observed by the releasing core prior
to the release write must be ordered before the release from the
viewpoint of an acquire read that reads from the release write

C2C1C0

Main Memory

STB STB

C0 C1 C2

ST flag11 if (LD flag1==1) if (LD flag2==1)

FENCE[LD.ST,ST] FENCE[LD,LD.ST]

ST flag21 LD flag1→test

flag1=0 flag2=1

Setting flag1 causes
setting flag2

0

50

100

150

200

250

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9
lik
e
	

W
R
	

rW
R
	

rW
M
	

rM
M
	

nW
R
	

nM
M
	

A
9
lik
e
	

riscv-curr riscv-ours

wrc

RISC-V	Baseline	(Base)

Te
st
	V
a
ri
a
ti
on
s

Bugs Overly	Strict Equivalent

μSpec Model:	

Variation:

Litmus	test:	

ISA:

RISC-V Base: Lack of
Cumulative Fences

C/C++ acquire/release synchronization is transitive: accesses before a
release write in program order, and observed by the releasing core prior
to the release write must be ordered before the release from the
viewpoint of an acquire read that reads from the release write

Base RISC-V ISA lacks cumulative fences
• Cumulative fence needed to enforce order between different-thread accesses
• Cannot fix bugs by modifying compiler

Our solution: add cumulative fences to the Base RISC-V ISA

More results in the paper:

Since publishing these results, a
RISC-V Memory Model Working
Group was formed to design a

robust MCM specification for the
RISC-V ISA that meets the needs of

RISC-V users and supports C11.

As of a few days ago, the new
MCM proposal passed the 45 day

ratification period.

▪Both Base and Base+A:

• Lack of cumulative lightweight
fences

• Lack of cumulative heavyweight
fences

• Re-ordering of same-address loads

• No dependency ordering, but
Linux port assumes it

▪Base+A only:

• Lack of cumulative releases; no
acquire-release synchronization

• No roach-motel movement

Like tutorial example

Evaluating Compiler Mappings with TriCheck

▪During RISC-V analysis, we discovered two counter-examples
while using the “proven-correct” trailing-sync mappings for
compiling C11 to POWER/ARMv7

▪Also incorrect: the proof for the C11 to POWER/ARMv7 trailing-
sync compiler mappings [Manerkar et al., CoRR ‘16]

TriCheck Conclusions

▪Memory model design choices are complicated =>

• Verification calls for automated analysis to comprehensively
tackle subtle interplay between many diverse features.

▪TriCheck uncovered flaws in the RISC-V memory model…

• But more generally, TriCheck can be used on any ISA.

▪Languages and Compilers matter too…

• TriCheck uncovered bugs in the trailing-sync compiler mapping
from C11 to POWER/ARMv7

Outline

▪ Introduction

▪Motivating Example

▪Overview of Our Work

▪MCM Background & Our Approach

▪PipeCheck: Verifying Hardware Implementations against ISA Specs

• Graph-based happens-before analysis of program executions on hardware

• μspec DSL for specifying axiomatic models of hardware

▪TriCheck: Expanding to HW/SW Stack Interface Issues

▪ Looking forward: Other uses of tools and techniques

• CCICheck, COATCheck, SecurityCheck, …

Princeton University ⁺Rutgers University *NVIDIA

ASPLOS 2016

Daniel Lustig, Geet Sethi⁺, Michael Pellauer*,
Margaret Martonosi, Abhishek Bhattacharjee ⁺

COATCheck: Verifying Memory Ordering at
the Hardware-OS Interface

http://check.cs.princeton.edu/

Simple Motivating Example

Permitted if x and y are different addresses Forbidden if x and y are synonyms

“Transistency Model”

▪Memory ordering verification is fundamentally incomplete unless it
explicitly accounts for address translation

▪ Superset of consistency which captures all address translation-aware
sets of ordering rules

▪Most prior techniques ignore the implications of virtual-to-physical
address translation on memory ordering

• E.g., synonyms, and page permission updates

▪Microarchitectural events and OS behavior can affect memory
ordering in ways for which standard memory model analysis can be
fundamentally insufficient

Ongoing Work

▪We’ve seen how memory model bugs can result in in correct program
outcomes that are intermittent/unpredictable

▪Currently, we are applying our techniques of exhaustive enumeration
and checking of event orderings to other domains

• Security: Is a hardware design susceptible to a given class of security
exploits?

− Hardware-aware exploit program synthesis

− We auto-synthesized programs representative of Meltdown & Spectre

− We also synthesized 2 new exploits related to Meltdown & Spectre but distinct
• https://arxiv.org/abs/1802.03802

• IoT: how do we reason about many concurrently acting IoT devices?

https://arxiv.org/abs/1802.03802

Takeaways

▪Memory consistency modes matter

• Reliability, correctness, and portability

• Performance

• Security

▪ Intuitive “checking” through automated verification

▪Move memory model verification earlier in the design processes

▪Evaluate across interfaces and design boundaries

• If interfaces are often source of bugs

▪ Speed of approach enables new oppertunities

• Comprehenseive and fast verification for iterative design

http://check.cs.princeton.edu/

