Multiprocessor Mixed-Criticality Scheduling

Sanjoy Baruah

Washington University in St. Louis

Multiprocessor Mixed-criticality Scheduling

OUTLINE

Mixed-criticality on
multiprocessors

uniprocessors

Multiprocessor real-time
Mixed criticality on scheduling

Uniprocessor real-time
Mixed-criticality basics scheduling

Predictability

- Functional predictability

- Timing predictability

The artefacts of computing are designed for functional predictability

Example
Input (float x, float y, time duration t)

Compute X*y within t time units

Functional correctness is the constraint and timing behavior the optimization objective

The formalisms of computing abstract away the concept of physical time

Timing predictability

A CPS = program ++ environment

/ \ - Enforce deterministic programming
The environment

Use special-purpose languages

The program E.g, the synchronous reactive (SR) languages

-A computation is a partial order of atomic actions

-Time advances in discret@of sufficient dur@

Example: X :=a + Db on the Motorola PowerPC 755

o /

Advantage: simplicity

- Best case: 3 cycles - Worst case: 321 cycles

Disadvantages: resource under-utilization

Timing predictability

A CPS = program ++ environment

/ \ - Enforce deterministic programming
The environment

- Enforce deterministic behavior

- Cache partitioning
The program - CAST-32 multicore recommendation

_The program
Cihepittormy]

Trading off efficiency for determinism

o

Certification Authorities Software Team (2014). Multi-core Processors. Position paper CAST-32.

Timing predictability

A CPS = program + platform +@ronment

/ \ - Enforce deterministic programming

- Enforce deterministic behavior

Is the physical world deterministic?

The program

e
—)

-We don’t know

-1t doesn’t matter!

The platform -Too complex to represent exactly

Deterministic models of event-triggered phenomena must incorporate pessimism

Edward Lorenz (1972). Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in
Texas? Talk at American Association for the Advancement of Science 139t annual meeting. Dec. 1972

Timing predictability via determinism

A CPS = program + platform + environment

p)

The environment - Pessimistic

The program - Possible (probably a good idea)

The platform

& nefficient

/III
\3

T
Timing predictability — the mixed-criticality approach

The environment

The program

The platform

/III\
\3 >

All run-time properties are not equally important

Behavior emerges from three interacting models

Validation of properties is done under assumptions

... that depend upon the semantics of the property

Deterministic programs executing on non-deterministic platforms,

interacting with a non-deterministic environment

An lllustration

Execute J, over [0,1) and J; over [1,2)

if J; signals that it has completed

then execute J, over [2,3) and J, over [3,5)

Worst-case execution
times (WCETSs)

I R SR - B s

>

. SN G

J, and J; are subject to certification CA’s WCET estimates

An lllustration

Execute J, over [0,1) and J; over [1,2)

if J; signals that it has completed
then execute J, over [2,3) and J, over [3,5)

else execute J, over [2,3) and J, over [3,5)

Validation by
System Developer:

Worst-case execution

es (WCETs)
g T . d . . . 1 1
A I
J, , y . 3 3
ii l 1 2
J3 5 | | . >
0 1 2 3 4 5 6

J, and J; are subject to certification

An lllustration

Execute J, over [0,1) and J; over [1,2)

if J; signals that it has completed

then execute J, over [2,3) and J, over [3,5)

else execute J, over [2,3) and J, over [3,5)

L) S T

T~

Validation by
Certification Authority:

Worst-case execution
times (WCETSs)

i L/

v

v

J, and J; are subject to certification

" te—

% %]
D@m

Mixed criticality: the verification perspective
Assume-guarantee reasoning ROBUSTNESS: holds even when
do not
RESILIENCE: A graceful degradation of the
when the do not hold
Assume run-time behavior These are the
of environment satisfies ”safe” states

these specifications

_— &

System

\/ executes

\BJ\\/

“Standard” mixed-criticality scheduling theory does not address robustness or resilience

% %]
D@m

Mixed criticality: the verification perspective

MIXED CRITICALITY: Synthesize a deterministic system to satisfy multiple assume-guarantee

specifications

Y 4

System

\ 7

Notation

L= berleOl et d) | | (16 0 113

J,=(HI,0,[3,3],5)
J,=(HI, 1, [1,2],5)

Worst-case execution
times (WCETSs)
) T l 1 1

0 1 2 3 4 5 6

J, and J; are subject to certification

Behaviors

‘Ji = (Xi, r, [Ci(LO), Ci(HI)r dl) ‘

During an execution of the system, J; signals completion after executing for p, time units
if p, < ¢,(LO) for all jobs J,, LO-criticality behavior
else if p, < c,(HI) for all jobs J,, HI-criticality behavior

else erroneous behavior

Correctness

A mixed-criticality scheduling algorithm is correct
if all jobs meet their deadlines in LO-criticality behaviors

and all Hi-criticality jobs meet their deadlines in Hl-criticality behaviors

Notions of schedulability

A clairvoyant scheduling algorithm knows the p, values beforehand
- A hypothetical abstraction

An on-line(OL) algorithm only knows p, when J. signals completion

Clairvoyant-schedulable and Mixed-criticality (MC) schedulable

Result: Not all clairvoyant-schedulable instances are MC-schedulable
(s

peedup factor of an OL algorithm Alg: “any instance that is clairvoyant-)

schedulable is Alg-schedulable upon a processor that is s times as fast.”

dle) y

Mixed-criticality on
multiprocessors

Mixed criticality on scheduling

[Multiprocessor real-time]
uniprocessors Y

Uniprocessor real-time

[Mixed-criticality basics] scheduling

Uniprocessor Real-Time Scheduling

* The Earliest Deadline First (EDF) scheduling algorithm
* Optimality of EDF on preemptive uniprocessors
* The sporadic tasks model

e EDF scheduling of sporadic task systems

