
Sanjoy	Baruah	
	Washington	University	in	St.	Louis	

Multiprocessor	Mixed-Criticality	Scheduling	



Multiprocessor	Mixed-criticality	Scheduling	

Mixed-criticality	on	
multiprocessors	

Uniprocessor	real-time	
scheduling	

Mixed	criticality	on	
uniprocessors	

Multiprocessor	real-time	
scheduling	

OUTLINE	

Mixed-criticality	basics	



-	Functional	predictability	

-	Timing	predictability	

The	artefacts	of	computing	are	designed	for	functional	predictability		

Example	
Input	(float x, float y, time duration t)	
Compute	x*y	within	t	time	units	

				

Functional	correctness	is	the	constraint	and	timing	behavior	the	optimization	objective	

The	formalisms	of	computing	abstract	away	the	concept	of	physical	time	

Predictability	



Disadvantages	Disadvantages:	resource	under-utilization	

The	program	

The	platform	

The	environment	
	-	Enforce	deterministic	programming			

Example:	x := a + b		on	the	Motorola	PowerPC	755			

-	Best	case:	3	cycles		 -	Worst	case:	321	cycles		

	-A	computation	is	a	partial	order	of	atomic	actions	

-Time	advances	in	discrete	steps	of	sufficient	duration				

	Use	special-purpose	languages	

Advantage:	simplicity	

A	CPS	=	program	+	platform	+	environment		

E.g,	the	synchronous	reactive	(SR)	languages	

Timing	predictability	



The	program	

The	platform	

The	environment	 	-	Enforce	deterministic	behavior	
	-	Cache	partitioning	

	-	CAST-32	multicore	recommendation	

Certification	Authorities	Software	Team	(2014).	Multi-core	Processors.	Position	paper	CAST-32.		

	-	Enforce	deterministic	programming			

Trading	off	efficiency	for	determinism	

A	CPS	=	program	+	platform	+	environment		

Timing	predictability	



The	program	

The	platform	

The	environment	

Is	the	physical	world	deterministic?	

	-	Enforce	deterministic	behavior	

	-	Enforce	deterministic	programming			

A	CPS	=	program	+	platform	+	environment		

Timing	predictability	

- We	don’t	know	
- It	doesn’t	matter!	
- Too	complex	to	represent	exactly	–	need	models	

Deterministic	models	of	event-triggered	phenomena	must	incorporate	pessimism	

Edward	Lorenz	(1972).	Predictability:	does	the	flap	of	a	butterfly’s	wings	in	Brazil	set	off	a	tornado	in	
Texas?	Talk	at	American	Association	for	the	Advancement	of	Science	139th	annual	meeting.	Dec.	1972	

	



The	program	

The	platform	

The	environment	

Timing	predictability	via	determinism	

Possible	(probably	a	good	idea)	

Inefficient	(increasingly	so)	

Pessimistic	(increasingly	so)	

A	CPS	=	program	+	platform	+	environment		



The	program	

The	platform	

The	environment	

Timing	predictability	–	the	mixed-criticality	approach	

Deterministic	programs	executing	on	non-deterministic	platforms,	
interacting	with	a	non-deterministic	environment	

All	run-time	properties	are	not	equally	important	

Behavior	emerges	from	three	interacting	models	

Validation	of	properties	is	done	under	assumptions	

…	that	depend	upon	the	semantics	of	the	property		



An	Illustration	

0									1														2														3													4														5														6	

1	

J1	

J2	

J3	

1	

3	

1	

Worst-case	execution	
times	(WCETs)	

1	

3	

2	

CA’s	WCET	estimates	J2	and	J3	are	subject	to	certification	

Execute	J2	over	[0,1)	and	J3	over	[1,2)		

if	J3	signals	that	it	has	completed		
then	execute	J1	over	[2,3)	and	J2	over	[3,5)		
else		execute	J2	over	[2,3)	and	J2	over	[3,5)		



An	Illustration	

0									1														2														3													4														5														6	

J1	

J2	

J3	

1	

3	

1	

Worst-case	execution	
times	(WCETs)	

1	

3	

2	

J2	and	J3	are	subject	to	certification	

Execute	J2	over	[0,1)	and	J3	over	[1,2)		

if	J3	signals	that	it	has	completed		
then	execute	J1	over	[2,3)	and	J2	over	[3,5)		
else		execute	J2	over	[2,3)	and	J2	over	[3,5)		

Validation	by		
System	Developer:	



An	Illustration	

0									1														2														3													4														5														6	

J1	

J2	

J3	

1	

3	

1	

Worst-case	execution	
times	(WCETs)	

1	

3	

2	

J2	and	J3	are	subject	to	certification	

Execute	J2	over	[0,1)	and	J3	over	[1,2)		

if	J3	signals	that	it	has	completed		
then	execute	J1	over	[2,3)	and	J2	over	[3,5)		
else		execute	J2	over	[2,3)	and	J2	over	[3,5)		

Validation	by		
Certification	Authority:	



Mixed	criticality:	the	verification	perspective	

System	
executes	

These	are	the	
”safe”	states	

ROBUSTNESS:	 Guarantee	 holds	 even	 when	
assumptions	do	not	

RESILIENCE:	 A	 graceful	 degradation	 of	 the		
guarantee	when	the	assumptions	do	not	hold	

“Standard”	mixed-criticality	scheduling	theory	does	not	address	robustness	or	resilience			

Assume-guarantee	reasoning	

Assume	run-time	behavior	
of	environment		satisfies	
these	specifications	



Mixed	criticality:	the	verification	perspective	

System	
	

MIXED	CRITICALITY:	Synthesize	a	deterministic	system	to	satisfy	multiple	assume-guarantee	
specifications		



Notation	

0									1														2														3													4														5														6	

1	

3	

1	

J1	

J2	

J3	

Worst-case	execution	
times	(WCETs)	

1	

3	

2	

J2	and	J3	are	subject	to	certification	

J1	=	(LO,	0,	[1,	1],	3)	

J2	=	(HI,	0,	[3,	3],	5)	

J3	=	(HI,	1,	[1,	2],	5)	

Ji	=	(χi,	ri,	[ci(LO),	ci(HI),	di)	



Behaviors	

Ji	=	(χi,	ri,	[ci(LO),	ci(HI),	di)	

During	an	execution	of	the	system,	Ji	signals	completion	after	executing	for	pi	time	units	

if		pi	≤	ci(LO)	for	all	jobs	Ji,	LO-criticality	behavior	

else if		pi	≤	ci(HI)	for	all	jobs	Ji,	HI-criticality	behavior	

else		erroneous	behavior	

Correctness	

A	mixed-criticality	scheduling	algorithm	is	correct	
if	all	jobs	meet	their	deadlines	in	LO-criticality	behaviors	

and	all	HI-criticality	jobs	meet	their	deadlines	in	HI-criticality	behaviors	



Notions	of	schedulability	

Correctness	

A	clairvoyant	scheduling	algorithm	knows	the	pi	values	beforehand	

-  A	hypothetical	abstraction	

An	on-line(OL)	algorithm	only	knows	pi	when	Ji	signals	completion	

Clairvoyant-schedulable	and	Mixed-criticality	(MC)	schedulable	

Result:	Not	all	clairvoyant-schedulable	instances	are	MC-schedulable	

Speedup	factor	of	an	OL	algorithm	 :	“any	instance	that	is	clairvoyant-

schedulable	is	 -schedulable	upon	a	processor	that	is	s	times	as	fast.”		

(s	≥	1)	



Outline	

Mixed-criticality	on	
multiprocessors	

Uniprocessor	real-time	
scheduling	

Mixed	criticality	on	
uniprocessors	

Multiprocessor	real-time	
scheduling	

Mixed-criticality	basics	
Uniprocessor	real-time	

scheduling	



•  The	Earliest	Deadline	First	(EDF)	scheduling	algorithm	

•  Optimality	of	EDF	on	preemptive	uniprocessors	

•  The	sporadic	tasks	model	

•  EDF	scheduling	of	sporadic	task	systems	

Uniprocessor	Real-Time	Scheduling	


