
Resource Management in Multicores—
Finding and Handling the Bullies

Andreas Sandberg, David Eklöv, Erik Hagersten
{andreas.sandberg, david.eklov, eh}@it.uu.se

Profile Run
We sample an application's 
memory accesses using a 
lightweight sampler. Using 
StatStack, we create a stack 
distance profile from the sample.

Memory Access Analysis
Using the stack distance profile 
we can determine if the data 
referenced by an instruction 
will be reused after it is 
installed in the cache.

Compiler Feedback
We automatically disable 
caching for instructions that do 
not reuse data by injecting 
prefetchnta instructions into the 
compiler output.

Miss Ratio Curves
Using the stack distance 
profile, we calculate the 
target application's miss 
ratio as a function of 
cache size. The miss 
ratio curve represents 
the application's cache 
behavior.

Classification
We define the cache 
sensitivity of an 
application, δ, to be the 
difference in miss ratio 
when running in 
isolation, r

b

, and when 
running only in the 
private cache, r

p

. Using 
δ and r

b

 we can classify 
an application's cache 
behavior.

Classification of Managed Applications
Most applications classified as wasting cache 
resources get a nicer behavior when we apply cache 
management. Since it is replacements that cause 
most interference, we base the new classification on 
replacement ratios instead of miss ratios.

Miss Ratio Curves
We calculate the new 
miss ratio and 
replacement ratio 
curves for the managed 
application using the 
stack distance profile 
and information from 
the analysis.

Better Mixed Workload Performance
The performance of mixed workloads containing 
applications classified as Gobblers & Victims or 
Cache Gobblers, is significantly improved by cache 
management. The reduced impact can be attributed 
to decreases in replacement ratio.

P
ro

fil
in

g
A

n
al

ys
is

R
es

u
lt

s

Problem
• Contention for shared resources is a major bottleneck 

for multicores—especially for mixed workloads.
• Modern processors implement instructions to manage 

caches, but they are typically unused.

Solution
• We propose a classification that allows us to predict 

application interference.
• We propose a method to automatically insert cache 

management instructions into misbehaving software.




