
Uppsala Programming for Multicore
Architectures Research Center

Improving the World’s Fastest
Cache Simulator

Andreas Sandberg, Peter Vestberg, Erik Hagersten

Motivation
Traditional cache simulators incur a large runtime overhead; statistical
cache simulators promise to significantly reduce the overhead.

A low overhead simulator can be used to enable online optimizations.
For example, disabling caching for streaming memory accesses.

Results
We have:

Implemented a memory access sampler that runs on existing hardware.

Demonstrated an average overhead of 17%, which is 2x better than
previous samplers.

Statistical Cache Modeling
Sampled Memory Reuse Distances

2 4

Memory Access Stream
rd A rd B rd C wr A rd D rd A rd A rd C

Statistical cache models use sampled reuse
distances, i.e. the number of memory accesses
between two accesses to a cache line, to
estimate cache usage.

Stack Distance Distribution

Cache Size

A
cc

es
se

s

The reuse distance distribution is transformed
into a stack distance distribution. A stack
distance is the number of unique memory
accesses between two accesses to a cache line.

Miss Ratio Curves

Cache Size

M
is

s 
R

at
io

An application’s stack distance distribution
describes its cache miss behavior for all possible
cache sizes. This information can be used to
guide application optimizations.

Memory Access Sampling—Theory

rd A rd B rd C wr A rd D rd A rd A rd C

1
2

3

1 Program a performance counter to
generate an interrupt after a random
number of accesses.

2 Measure memory accesses using
performance counters.

3 Detect reuse using some hardware
mechanism, e.g. page protection.

Memory Access Sampling—Practice
Starting Samples

Problem
Counter overflows are
delayed. The delay depends
on the instructions in the
pipeline and introduces
bias.

Solution
Program the counter to
overflow some number of
events before the desired
sample point. Read the
counter and single step the
remaining instructions.

Counting Accesses

Problem
Hardware idiosyncrasies
introduce spurious counts
when executing some
operations, e.g. single
stepping.

Solution
Measure the events known
to cause spurious counts
and account for their effect.

Detecting Reuse

Problem
Sampling requires several
simultaneously active cache
line watchpoints, but x86
only supports a few small
watchpoints.

Solution
Use page protection to
emulate cache-line sized
watchpoints by protecting
the entire page where the
cache line resides and
handle any false positives.

Performance and Accuracy
Average Runtime Overhead

0%

5%

10%

15%

20%

25%

30%

35%

bwaves
milc

zeusmp
leslie3d

libquantum

lbmastar
sphinx3

hmmer
omnetpp

O
ve

rh
ea

d

Average

17%

Average runtime overhead for a subset of
the long-running SPEC2006 benchmarks.
The sampler was configured to take 20 000
samples spread over the entire execution.
This resulted in an average overhead
of approximately 17%.

Runtime Breakdown

0

1

2

3

4

5

6

7

bwaves
milc

zeusmp
leslie3d

libquantum

lbm astar
sphinx3

hmmer
omnetpp

S
am

pl
e

O
ve

rh
ea

d
(m

s/
sa

m
pl

e) Single Steps
False Page Hits

The overhead from watchpoint handling
stems from the fact that we need to protect
entire pages, even though we are only
interested in a single cache line, while the
single stepping overhead is due to
compensation for performance counter
inaccuracies.

Accuracy

1k 16k 64k 256k 1M 4M4k
Cache Size (B)

0%

10%

20%

30%

40%

M
is

s 
R

at
io

1k 16k 64k 256k 1M 4M4k
Cache Size (B)

0%

10%

20%

30%

40%

M
is

s 
R

at
io

sphinx3
ref. sampler

povray
hmmer
omnetpp

lbm
ref. sampler

astar
gamess
milc

Miss ratio curves generated with the
statistical cache model from both a reference
sampler and our sampler. The accuracy of
the sampler is generally very good.

Department of Information Technology, Uppsala University http://it.uu.se/


