
Uppsala Programming for Multicore
Architectures Research Center

Correctness and Concurrency:

Formal Verification within UPMARC

1Automatic Verification under Relaxed Memory Models

Results for the TSO Memory Model
Size Total time Fences

Proc./States/Var./Trans seconds necessary
(one fence set) (smallest set)
SB PB

Simple Dekker 2/8/2/10 0.02 0.04 1 per process
Full Dekker 2/14/3/18 0.28 0.06 1 per process
Peterson 2/10/3/14 0.24 2 1 per process
Lamport Bakery (bounded) 2/22/4/32 52 19 2 per process
Lamport Fast 2/26/4/38 6.5 2 2 per process
CLH Queue Lock 2/48/4/60 26 0
Sense Reversing Barrier 2/16/2/24 1.1 0
Burns 2/9/2/11 0.07 0.02 1 per process
Dijkstra 2/14/3/24 9.5 0.35 1 per process
Tournament Barriers 2/8/2/8 1.2 0

Lamport Bakery (unbounded) 2/18/4/20 $ 154 2 per process

Linux Ticket Lock (unbounded) 2/8/2/8 $ 2 0

Method SB: Sound and complete for boolean programs

Method PB: Sound but incomplete for integer programs

Memory accesses in parallel programs are reordered by hardware.

Makes lock free synchronization difficult

Memory barriers often necessary for correctness

Different reorderings possible on different architectures

Automatic Verification & Automatic Fence Insertion

P0 P1

x := 1 y := 1

if(y == 0){ if(x == 0){
crit sec0() crit sec1()

} }

P0: y == 0

P1: y := 1

P1: x == 0

P0: x := 1

P0: crit sec0()

P1: crit sec1()

re
or

d
er

in
g

P0: crit sec0()

P1: crit sec1()

P0 P1

x := 1 y := 1

fence fence

if(y == 0){ if(x == 0){
crit sec0() crit sec1()

} }

⇒ ⇒

Error!Source Code Model
(Simplified Dekker mutex lock)

Correction

Prototype at
https://github.com/memorax/memorax

Contact
Parosh Aziz Abdulla

Mohamed Faouzi Atig

Carl Leonardsson

2Caches, Coherence and Accelerations of Transactional Memories

Motivation: Memory cashes in a multicore
machine are distributed over many
processors / many cores: Need for cash
coherence protocols.

Challenge: Automatic verification of
correctness (strict serializability) and liveness
properties with an arbitrary number of
caches or transactions of arbitrary length.

Case of study: TMESI protocol.

Execution

Program

Scheduler

Response

trace

e

Commands

TM Algorithm

Transactional Memory (TM) system

Our approach is based on:
Symbolic representations techniques.

Language inclusion and simulation, Abstractions,

Regular model checking

Long Term Goal
A platform that allows, with minimal human interaction,
the verification and the validation of new cache protocols
and hardware accelerated transactional memories.
Contact
� Parosh Aziz Abdulla � Lukáš Hoĺık � Yunyun Zhu.

3Verification of highly concurrent algorithms / parameterized systems

Objective: Verifying safety properties for
parameterized systems that consist of arbitrary
numbers of components (processes) organized
according to a regular pattern.

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

∀

∀L

∃L

Expected Results: Proving safety of an infinite
family (one for each possible size of the system)
by only inspecting small instances of the system.

Target: Highly
concurrent data
structures, such as
Treiber’s lock-free
stack or
Michael&Scott’s
lock-free queue

Expected Results: Proving stack or queue properties
such as orderedness, lossyness or duplication, in the
absence of garbage collection, by using the method for
parametrized systems (on the left).

Contact
Parosh Aziz Abdulla

Frédéric Haziza

Lukáš Hoĺık

4Verification of Multi-Push Down automata

Idea: Analysis tools for sequential programs are more mature than
those for concurrent program. Can we leverage that power?

Yes! By translating concurrent programs to sequential ones.

Sequential program construction:
Each process Pi has stack bound ki and a context budget bi .

Construct scheduler which simulates interleaving executions.

A process Pi is only allowed bi preemptions as long as its call stack is
above ki .

Prototype at http://user.it.uu.se/ jarst116/fmcad2012/

Results:
Detection of deep bugs (big # interleavings needed).

Complete correctness proof of certain programs.

G1

. . .

Gn

.

S

Concurrent Program

P1 Pn

. . .

F1 Fn

G1, . . . , Gn

S

S
0

1, . . . , S
0

n

.

.

.

S
2k

1 , . . . , S
2k

n

Sequential
Program

Contact

Parosh Aziz Abdulla

Mohamed Faouzi Atig
Jari Stenman

Othmane Rezine

Department of Information Technology, Uppsala University http://it.uu.se/

