
Uppsala Programming for Multicore
Architectures Research Center

Bandwidth Bandit:
Understanding Memory Contention

David Eklov, Nikos Nikoleris, David Black-Schaffer and Erik Hagersten

Motivation
Contention for off-chip memory bandwidth is increasingly important:

1 can have large impact on application performance [1, 3] and

2 is likely to increase in the future [2].

. . . but bandwidth demand != sensitivity

0

1

2

lbm soplex streamcluster mcf

ba
nd

w
id

th
(G

B
/s

)

Applications with similar bandwidth demands

0%

10%

20%

lbm soplex streamcluster mcf
sl

ow
do

w
n

(%
)

have different slowdowns due to
contention for the off-chip memory.

Goal: Analyze Memory Contention.
To understand the impact of memory
contention we need:

CPI=f(BW)

0

1

2

3

4

0 2 4 6 8

C
P

I

bandwidth (GB/s)

Quantitative data that allows us to analyze the
impact of memory contention.

Bandwidth Bandit
Profiling tool for measuring applications’ sensitivity to memory
contention.
Works as follows:

Co-runs the Target application with a Bandit application

The Bandit “steals” memory bandwidth from the Target

Varies the amount of bandwidth stolen while measuring the Target

Result:

Target’s IPC as a function of its available memory bandwidth

Core

T
Core

B
Core

B
Core

B

MC
L3-$

DRAM

MC DIMM

DIMM

Memory
Controller

Results

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

T
ar

ge
t

B
an

dw
id

th

T
ar

ge
t

IP
C

Bandit Bandwidth

433.milc

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

T
ar

ge
t

B
an

dw
id

th

T
ar

ge
t

IP
C

Bandit Bandwidth

450.soplex

large slowdowns before bw saturates → latency sensitive

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

T
ar

ge
t

B
an

dw
id

th

T
ar

ge
t

IP
C

Bandit Bandwidth

429.mcf

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0

T
ar

ge
t

B
an

dw
id

th

T
ar

ge
t

IP
C

Bandit Bandwidth

470.lbm

slowdowns only when bw saturates → bandwidth sensitive

Case Study

Predict the performance impact of memory contention when
co-running one, two, three and four instances of OMNet++.

Reference
1 Co-run all instances and measure the aggregate throughput

“Naive” Prediction
1 Assume that there is no slowdown as long as the instances’

total bandwidth is less than the systems peak bandwidth.

Bandit Graphs
1 Use bandwidth graphs to estimate instances’ bandwidth
2 Then, use their bandwidth to estimate their IPCs

0%

10%

20%

30%

40%

0% 20% 40% 60% 80% 100%
0.0

0.1

0.2

0.3

0.4

0.5

T
ar

ge
t

B
an

dw
id

th

T
ar

ge
t

IP
C

Bandit Bandwidth

OMNet++
Bandwidth

IPC

0

1

2

3

4

1 2 3 4

th
ro

ug
hp

ut

instances

OMNet++

naive-predicted

reference

bandit-predicted

Result: The prediction based on Bandwidth Bandit data almost perfectly
matches the reference throughput.

Sensitivity to memory contention

Contrary to previous results [1, 3] neither the baseline bandwidth nor the baseline IPC are good indicators of an
application’s sensitivity to memory contention.

Baseline Bandwidth – Application’s
bandwidth when running alone

Baseline IPC – Application’s IPC when
running alone

Slowdown – Baseline IPC / IPC at 90%
of saturation bandwidth

0

5

10

15

20

25

30

35

0 1 2 3

sl
ow

do
w

n
(%

)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

canneal stream.

baseline bw != sensitivity

0

5

10

15

20

25

30

35

0 0.5 1 1.5

sl
ow

do
w

n
(%

)

baseline IPC

mcf

milc

leslie

soplex

lbm

canneal stream.

baseline ipc != sensitivity

low baseline bandwidth

large slowdowns

high baseline bandwidth

different slowdowns

different baseline ipc

same slowdowns

same baseline ipc

different slowdowns

References

[1] T. Dey, W. Wang, J. W. Davidson, and M. L.

Soffa.

Characterizing multi-threaded applications

based on shared-resource contention.

In Proc. of ISPASS, 2011.

[2] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu,

X. Jiang, and Y. Solihin.

Scaling the bandwidth wall: challenges in and

avenues for CMP scaling.

In Proc. of ISCA, 2009.

[3] L. Tang, J. Mars, N. Vachharajani, R. Hundt,

and M. L. Soffa.

The impact of memory subsystem resource

sharing on datacenter applications.

In Proc. of ISCA, 2011.

Department of Information Technology, Uppsala University http://it.uu.se/


