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Motivation
Contention for off-chip memory bandwidth is increasingly important:

1 can have large impact on application performance [1, 3] and

2 is likely to increase in the future [2].

. . . but bandwidth demand != sensitivity
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Applications with similar bandwidth demands
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have different slowdowns due to
contention for the off-chip memory.

Goal: Analyze Memory Contention.
To understand the impact of memory
contention we need:

CPI=f(BW)
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Quantitative data that allows us to analyze the
impact of memory contention.

Bandwidth Bandit
Profiling tool for measuring applications’ sensitivity to memory
contention.
Works as follows:

Co-runs the Target application with a Bandit application

The Bandit “steals” memory bandwidth from the Target

Varies the amount of bandwidth stolen while measuring the Target

Result:

Target’s IPC as a function of its available memory bandwidth
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large slowdowns before bw saturates → latency sensitive
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slowdowns only when bw saturates → bandwidth sensitive

Case Study

Predict the performance impact of memory contention when
co-running one, two, three and four instances of OMNet++.

Reference
1 Co-run all instances and measure the aggregate throughput

“Naive” Prediction
1 Assume that there is no slowdown as long as the instances’

total bandwidth is less than the systems peak bandwidth.

Bandit Graphs
1 Use bandwidth graphs to estimate instances’ bandwidth
2 Then, use their bandwidth to estimate their IPCs
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Result: The prediction based on Bandwidth Bandit data almost perfectly
matches the reference throughput.

Sensitivity to memory contention

Contrary to previous results [1, 3] neither the baseline bandwidth nor the baseline IPC are good indicators of an
application’s sensitivity to memory contention.

Baseline Bandwidth – Application’s
bandwidth when running alone

Baseline IPC – Application’s IPC when
running alone

Slowdown – Baseline IPC / IPC at 90%
of saturation bandwidth

0

5

10

15

20

25

30

35

0 1 2 3

sl
ow

do
w

n
(%

)

baseline bandwidth

mcf

milc

leslie

soplex

lbm

canneal stream.

baseline bw != sensitivity
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