

Uppsala Programming for Multicore Architectures Research Center

Power-Sleuth: A Tool for Investigating your Program's Power Behavior

Vasileios Spiliopoulos, Andreas Sembrant and Stefanos Kaxiras

1. Power Profiling in different frequencies

Power characterization:

- What is the execution time of each phase?
- What is the power of each phase?
- How is execution time/power affected by frequency scaling?

Power-Sleuth characterizes application phases using performance and power models Analytical DVFS performance model

Power-performance counters correlation model

$$P = f \times C_{pred} \times V^2 + P_{static}$$

2. Profile applications at f_{max} and predict execution time and power at f_{max} and f_{min}

How does Power-Sleuth work?

Runs an application once

- Detects phases using ScarPhase library
- Measures performance counters
- Estimates execution time and power consumption under any frequency without re-running the application

No power measurements required! Power-Sleuth delivers

Accurate prediction: less than 4% average error for both execution time and power prediction (running SPEC2006)
Per phase analysis: instead of total energy

0 5 10 15 20 25 30 3 Program Execution in Billions of Instructions

and execution time, Power-Sleuth predicts for each program phase separately Program Execution in Billions of Instructions

$$f_{max}$$
 —— f_{min} ----- $f_{max} o f_{min}$ —

Execution time (measured and predicted) for astar/lakes (top graph) and gcc/166(bottom graph)

Reference f_{max} Power-Sleuth f_{max} Reference f_{min} Power-Sleuth f_{min}

Power estimation in f_{max} and f_{min} for astar/lakes (top graph) and gcc/166(bottom graph)

3. Power-Sleuth accuracy

No power measurement infrastructure required

■ We estimate power for both max and min frequency

4. Using Power-Sleuth

Optimizing for power

Optimal DVFS scheduling
Performance constraints for specific phases
Optimizing power-efficiency (e.g. minimum EDP)

Accurately estimating execution time and power of every program phase under any voltage-frequency setting
Linking phases back to the source code

Execution time and energy consumed under max/min frequency for the phases of gcc/166.

