Implicit solvers for two phase flow with sharp interfaces

Sandra May1

Jointly: Ferdinand Thein2

1Department of Information Technology, Uppsala University
2IGPM, RWTH Aachen
Two-phase flow: Flow involving both gas and liquid, e.g., air bubble rising in water

Focus: Creation of a new phase, e.g. fast moving propellor in water tunnel (can cause severe damage)
Creation of a new phase

Use sharp interfaces

\[t^{n+1} \quad \text{gas} \quad t^n \]

\[x_{i0+1/2} \]

⇒ Results in tiny cells

⇒ need special treatment

⇒ new mixed explicit implicit scheme:
 - treat majority of cells using explicit time stepping
 - treat some cells using implicit time stepping
 ⇒ need to solve small implicit systems
Creation of a new phase

Use sharp interfaces

\[t^{n+1} \]

\[t^n \]

\[x_{i0+1/2} \]

⇒ Results in tiny cells

⇒ need special treatment

⇒ new mixed explicit implicit scheme:
 - treat majority of cells using explicit time stepping
 - treat some cells using implicit time stepping
 ⇒ need to solve small implicit systems

Situation:
 - New approach works better than what people use so far
 - BUT: the implicit solve sometimes takes longer than it should
Creation of a new phase

Use sharp interfaces

\[t^{n+1} \quad \text{gas} \quad t^n \]

\[x_{i0+1/2} \]

⇒ Results in tiny cells
⇒ need special treatment
⇒ new mixed explicit implicit scheme:
 • treat majority of cells using explicit time stepping
 • treat some cells using implicit time stepping
 ⇒ need to solve small implicit systems

Situation:
• New approach works better than what people use so far
• BUT: the implicit solve sometimes takes longer than it should
⇒ Goal: improve that
ToDos

Goal: Test numerically and understand results
mostly 1d and matlab

1. Examine pseudo time stepping / read on new literature
2. Test more Newton-like approaches

Necessary background:
- Programming
- Time stepping schemes (Runge-Kutta schemes)
- Implicit solvers
- A course about numerics for PDEs (Finite volume)