Courses on Combinatorial Optimisation

Pierre Flener http://user.it.uu.se/~pierref Pierre.Flener@it.uu.se

Computing Science Division Department of Information Technology Uppsala University Sweden

Autumn semester

Example (Doctor Rostering)

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

Constraints to be satisfied:

- 1 #on-call doctors / day = 1
- 2 #operating drs / weekday \leq 2
- 3 #operating drs / week \geq 7
- 4 #appointed drs / week \geq 4
- 5 day off after operating day
- 6 ...

Objective function to be minimised:

```
Cost: ...
```


Example (Doctor Rostering)

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Doctor A	call	none	oper	none	oper	none	none
Doctor B	appt	call	none	oper	none	none	call
Doctor C	oper	none	call	appt	appt	call	none
Doctor D	appt	oper	none	call	oper	none	none
Doctor E	oper	none	oper	none	call	none	none

Constraints to be satisfied:

- 1 #on-call doctors / day = 1
- **2** #operating drs / weekday \leq 2
- 3 #operating drs / week \geq 7
- 4 #appointed drs / week \geq 4
- 5 day off after operating day

Objective function to be minimised:

```
Cost: ...
```

6 . . .

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

Example (Vehicle Routing: Parcel Delivery)

Given a depot with parcels for clients and a vehicle fleet, **find** which vehicle visits which client when.

Constraints to be satisfied:

1 All parcels are delivered on time.

- 2 No vehicle is overloaded.
- 3 Driver regulations are respected.

Depot

Objective function to be minimised:

Cost: the total fuel consumption and driver salary.

Applications in Air Traffic Management

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

Demand vs capacity

Contingency planning

Flow	Time Span	Hourly Rate
From: Arlanda	00:00 - 09:00	3
To: west, south	09:00 - 18:00	5
	18:00 - 24:00	2
From: Arlanda	00:00 - 12:00	4
To: east, north	12:00 - 24:00	3

Airspace sectorisation

Workload balancing

Applications in Biology and Medicine

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

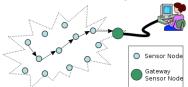
Phylogenetic supertree

Haplotype inference

Medical image analysis

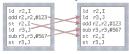
Doctor rostering

Applications in Programming and Testing

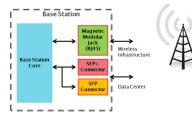

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

Robot programming



Sensor-net configuration



Compiler design COMPILERS FOR INSTRUCTION SCHEDULING

C Compiler C++ Compiler

Base station testing

Other Application Areas

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

School timetabling

_							
	Munday	Turnlay	Wednesday	Thursday	Triday		
9.00	HIT2202 Ordinary Differential Equations FTb1		LABC 52672 Computer Oraphics (D) Dual	Mittaba Numerical Analysis / Differences, 003			
10.00	XMT2292 Dicinary Differential Equations M015 / Rescon, 2.3		LABC S2072 Computer Graphics (D) Qual	XMT2282 Oxtinary Criterentia' Biguetoto Siene Engineering, Basement Theatre 34 XMT2282 Numerical Analysis / L020	XMT2282 Ordinary Differential Equations 19515		
11.00	C 82912 Algorithms and Data Structures 1.1		XMT2212 Futher Linear Algebra 1.8		HIT2202 Distinary Differential Equations BiogRovel, Theater 1		
12.00	BIT2212 Putter Linear Algebra Rescoe, Theatre A	Mittanson, G03	C 82872 Conputer Graphice 1.1		BIT2212 Putter Linear Algebra Blogford, Theatre 1		
			PASS Peer Assisted Study IAST / LP15 / LP17 / IAGE		XM12212 Putter Linear Algebra Simon Engineering, Basement Theater Af		
	C 52572 Computer Graythice 1.5			XM12212 Forther Linear Algebre 19247			
3.00		C STUT Tutorial					
4.88		C32012 Algorithms and Date Structures 11					

Security: SQL injection?

Sports tournament design

Container packing

Combinatorial Optimisation

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442) Many important real-life problems are NP-hard or worse: their real-life instances can only be solved optimally and fast enough by intelligent search, unless P = NP.

Note that our small instance for Doctor Rostering already has $4^{5\cdot7} \approx 1.2 \cdot 10^{21}$ candidate solutions, but real-life instances have more than 4 activities and 5 doctors, and assign hourly instead of daily, over more than 7 days.

Combinatorial optimisation covers satisfaction problems *and* optimisation problems, for variables over discrete sets.

A solving technology offers methods and tools for:

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442) what: Modelling constraint problems in declarative language.

how: Solving constraint problems intelligently.

A solver is an off-the-shelf problem-independent program that takes a model & data as input and tries to find optimal solutions to that problem instance as fast as possible.

Examples: CP, LS, MIP, SAT, and SMT solvers (see below).

Example (Doctor Rostering)

Combinatorial Optimisation

Modelling (course 1DL451) Constraint Programming (course 1DL442)

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Doctor A	call	none	oper	none	oper	none	none
Doctor B	appt	call	none	oper	none	none	call
Doctor C	oper	none	call	appt	appt	call	none
Doctor D	appt	oper	none	call	oper	none	none
Doctor E	oper	none	oper	none	call	none	none

Constraints to be satisfied:

- 1 #on-call doctors / day = 1
- **2** #operating drs / weekday \leq 2
- 3 #operating drs / week \geq 7
- 4 #appointed drs / week \geq 4

- 5 day off after operating day
- 6 ...

Objective function to be minimised:

```
Cost: ...
```


Optimisation

Modellina

Example (MiniZinc Model for Doctor Rostering)

```
-4 set of int: Davs: % d mod 7 = 1 iff d is a Monday
          -3 enum Doctors:
          -2 enum ShiftTypes = {appt, call, oper, none};
Combinatorial
          -1 array[Doctors, Days] of var ShiftTypes: Roster;
          0 solve minimize ...; % plug in an objective function
          1 constraint forall(d in Days)
              (count(Roster[..,d],call) = 1);
          2 constraint forall (d in Days where d mod 7 in 1..5)
               (count(Roster[...,d],oper) <= 2);</pre>
          3 constraint count(Roster, oper) >= 7;
          4 constraint count(Roster,appt) >= 4;
          5 constraint forall (d in Doctors)
              (regular(Roster[d,..], "((oper none)|appt|call|none)*"));
          6 ... % other constraints
```

Example (Instance data for our small hospital unit)

```
-4 Davs = 1..7;
-3 Doctors = {Dr A, Dr B, Dr C, Dr D, Dr E};
```


Modelling for Combinatorial Optimisation

(1DL451)

Race the same model under several solving technologies:

Constraint programming (CP):

any kinds of constraints on any kinds of variables full details in Part 2 of my course 1DL442 (below)

- Mixed integer linear programming (MIP): linear constraints & objective on int & float variables
- Propositional satisfiability (SAT):

clausal constraints on Boolean variables

SAT modulo theories (SMT):

SAT + integer arithmetic, bit vectors, ...

Local search (LS):

trade for speed all guarantees of provable optimality of solutions and provable unsatisfiability of problems *without* knowing their languages and solving algorithms:

Model once, solve everywhere!

Combinatorial Optimisation

Modelling (course 1DL451)

Constraint Programming (course 1DL442

Modelling for Combinatorial Optimisation

(3 credits)

- Period 1: late August to late October
- 12 lectures, in English
- No textbook required: slides, documentation, Coursera
- Modelling problems using the MiniZinc.org toolchain:
 - 3 assignments, to be done in pairs
 - 1 project, to be done in pairs (2 credits)

3 help sessions + 1 solution session per deliverable

- No exam
- Prerequisites: define or learn basic concepts in algebra, combinatorics, logic, graph theory, set theory
- http://user.it.uu.se/~pierref/courses/M4CO/course.html

Combinatorial Optimisation

Modelling (course 1DL451)

Constraint Programming (course 1DL442

Combinatorial Optimisation and Constraint Programming (CP)

(1DL442)

- Periods 1 & 2: late August to mid January(!)
- 24 lectures, in English
- No textbook required: slides and documentation
- Part 1: Modelling using MiniZinc.org: course 1DL451
- Part 2: Programming using MiniCP.org (Java):
 - 3 assignments towards understanding & extending a solver of CP technology; to be done in pairs (5 credits)

3 help sessions + 1 solution session per assignment

- No exam
- Prerequisites: define or learn basic concepts in algebra, combinatorics, logic, graph theory, set theory; implement basic search algorithms
- http://user.it.uu.se/~pierref/courses/COCP/course.html

Success Stories: Users and Contributors

Combinatorial Optimisation Modelling (course 1DL451)

Constraint Programming (course 1DL442)

Success stories: CP = **technology of choice** in scheduling, configuration, personnel rostering, timetabling, ...

Autumn

See you on Monday 29 August!?

Combinatorial Optimisation Modelling (course 1DL451)

Constraint Programming (course 1DL442)

Autumn