Polite Programmers, Use Spaces in Identifiers When Needed

Mircea F. Lungu

Software Architecture Group, University of Groningen
m.f.lungu@rug.nl

Abstract

JavaProgrammersUseCamelCaseToSeparateWordsInldentifiers.
Pythonistas_and_others_use_underscore_in_their_identifiers.
Polite programmers can use spaces in their identifiers if needed.

Keywords programming languages, design, usability, Smalltalk

1. Introduction

Polite Smalltalk is a small evolutionary mutation of the Smalltalk
programming language that aims to encourage developers to think
more about their programs as prose. The main mechanism by which
Polite does this is what we define here as sentence case identifiers
— a naming convention that allows spaces in identifier names.
Unlike projection editors which can easily allow spaces in their
identifiers, Polite programs are stored as text.

Although spaces in identifiers have been used before in DSLs
(e.g. Applescript, the Cucumber testing framework, Inform 7)
or COBOL, the feature is unusual for a general purpose object-
oriented text-based programming language. We suspect that the
main reason for this is historical: spaces allow the scanner to easily
tokenize the text in a traditional compiler backend architecture. We
are interested more in easying the job of the programmer instead.

We believe that sentence case identifiers could impact code
readability and we have two hypotheses why this could be:

¢ A syntax like that of Polite might encourage developers to think
more about their programs as prose. This might make them
work just a little bit harder towards writing more understandable
code.

e A system with sentence case identifiers might be perceived as
more user friendly by beginners.

We believe that it is worth investigating these hypotheses, given
the impact that even small increases in code readability could have
on software development: it is well known that developers spend
the vast majority of their time reading rather than writing source
code.

Some readers will argue that this is not a very serious problem,
since programmers do not use identifiers as long as we illustrated in
the abstract. For those readers, we present three method names that
can be found in three popular open source programs written in Java,
one of the most popular programming languages at the moment:

[Copyright notice will appear here once *preprint’ option is removed.]

short description of paper

Jan Kurs

Software Composition Group, University of Bern
kurs@inf.unibe.ch

// nakedobjects-4.0.0
whenCallEnsureThatContextOverloadedShouldThrowIll
egalThreadStateExceptionUsingSuppliedMessage

// aspectj-1.6.9
getPointcutParserSupportingSpecifiedPrimitivesAnd
UsingSpecifiedClassLoaderForResolution

// maven-3.0
disabledtestResolveCorrectDependenciesWhenDiffer
entDependenciesOnNewestVersionReplaced

2. Ilustrating the Polite Syntax

To experiment with sentence case identifiers, we started from
the grammar of Smalltalk and we modified all the rules that in-
volve identifiers to allow spaces in identifier names. Once this was
done, we discovered several other grammar modifications which
we considerd desirable. We named the resulting language Polite
Smalltalk or for short, Polite. Others in the past have also started
from Smalltalk and provided deltas to augment its syntax (Borning
and O’Shea 1987).

In this section we discuss those modifications to the original
Smalltalk language that were performed to obtain Polite.

2.1 Sentence Case Identifiers

In Smalltalk, to send to an object a unary message, one simply
separates the two with a space, e.g.

politeHero rechargeEnergy.

Keyword messages are similar but they are separated by their
arguments with a column, e.g.

politeHero fightWith: anEnemy.

If we want to allow spaces in the name of identifiers, we cannot
use space to separate the object and the message. In Polite we
introduce a comma to separate the name of an agent from the
message that is receives, as one would also do in natural language
(e.g. “Alfred, get the Batwing ready”). All the characters in an
identifier including the spaces are relevant for its identity. The
previous code snippets thus become:

polite hero, recharge energy.
polite hero, fight with: an enemy.

For the seasoned Smalltalkers, using a comma in this way might
be anathema since the operator is traditionally used to concatenate
strings and other collections. However, such a sentiment is mis-
placed since comma is just a simple message implemented in the
Collection class. In Polite, the ‘+° operator takes over the responsi-
bilities of ¢, and is thus used to concatenate two collections.

2016/9/17

2.2 Polite Programs

The Smalltalk grammar does not provide productions for programs
or classes, since the programmer grows a program by compiling a
method at a time in the Smalltalk IDE.

To be able to write programs independent of the Smalltalk IDE
we introduce a new grammar rule for a program: a sequence of class
and global method definitions, followed by code to be executed.
The following code snippet presents a simple program with one
class definition and a few lines of code:

Polite Class, subclass: ’Polite Hero’.

| energy level, name |

recharge energy
energy level := 100.
is dead
" energy level <= 0

fight with: an enemy
while neither: [self, is dead]
nor: [an enemy, is dead]
do: [self, throw a punch at: the enemy.
the enemy, throw a punch at: self.]

"The main program"

| polite hero |

polite hero := Polite Hero, new.
polite hero, recharge energy.

In the code snippet we see several other features of the language:

e A class declaration (line 1) has the syntax of a message sent to
the superclass for creating the subclass.

¢ Indentation based scoping is used for defining the body of a
class and the body of a method.

e Class, program, and method local variable declarations (lines 2
and 17) are enumerated between pipes and must be separated
by ¢, (line 2)

2.3 First Class Functions

Polite allows the definition of first class functions as opposed to
Smalltalk where a method must always be part of a class. These
functions are global to the program.

One of the benefits of this, is the possibility of implementing
new control structures like the one used in lines 10-14 from the
example program:

while neither: [self, is dead]
nor: [an enemy, is dead]
do: [self, fight with: an enemy]

The possibility of defining such ad-hoc control structures, that
other languages like Grace or Scala also provide, can be used to
improve the readability of program text. This is especially bene-
ficial for several of the conditional structures of Smalltalk which
were shown in a study by Stefik to be unintuitive for newcomers
to the language (Stefik and Siebert 2013). To illustrate the differ-
ence in readability, compare the previous code with the equivalent
traditional Smalltalk:

((self isDead not) and: [anEnemy isDead not])
whileTrue: [self fightWith: anEnemy]

short description of paper

3. Implementation

Polite is implemented on top of Pharo Smalltalk. The Polite pro-
grams are compiled to Smalltalk. The language interpreter is built
using PetitParser — a top-down context-sensitive parser combina-
tor framework that uses the parsing expression grammar formalism
(Kurs et al. 2014).

The current implementation of Polite can be found online and
downloaded from the Zenodo data repository (Kur§ et al. 2016).
The repository contains an image which includes the code for the
language implementation, a suite of more than 450 unit tests, and a
sytax-highlighting code editor that is pictured in Figure 1.

x -0 PolitePlayground
Polite Workspace
Object. subclass: Polite Hero
name, energy level
energy level :=10
name :=a string
i
energy level :=energy level +1
enemy. receive punch with STIE\'\glh
Output
Asterix (energy: 10) punches with
with: 5' 'Dr. Asterix (energy 5'
0) punches with: 4' 'Dr.

Figure 1. The Polite Playground provides a syntax highlighting

code editor for Polite

Acknowledgments

We would like to thank Oscar Nierstrasz and Tijs van der Storm for feed-

back on earlier versions of this paper.

References

A. Borning and T. O’Shea. Deltatalk: An Empirically and Aesthetically
Motivated Simplification of the Smalltalk-80 Language, pages 1-10.
Springer Berlin Heidelberg, 1987. doi: 10.1007/3-540-47891-4_1.

J. Kur§, M. Lungu, and O. Nierstrasz. Top-down parsing with parsing con-
texts. In Proceedings of International Workshop on Smalltalk Technolo-
gies (IWST 2014), 2014.

J. Kur§, M. Lungu, O. Nierstrasz, and T. Steinmann. Po-
lite smalltalk - an implementation, Sept. 2016. URL
https://doi.org/10.5281/zenodo.61578.

A. Stefik and S. Siebert. An empirical investigation into programming
language syntax. Trans. Comput. Educ., 13(4):19:1-19:40, Nov. 2013.
ISSN 1946-6226. doi: 10.1145/2534973.

2016/9/17

