Towards Automatic Decoration

Tomoyuki Aotani

Tokyo Institute of Technology
aotani@c.titech.ac.jp

Abstract

It is important from the view point of separation of con-
cerns to separate optional features from core features of
classes. The decorator pattern is a major technique to achieve
this in single inheritance object-oriented programming lan-
guages such as Java. There are also more advanced tech-
niques for modularity such as multiple inheritance, mixins,
traits, and incomplete objects. This direction is helpful for
implementers of classes in the sense that it helps to avoid
code duplication. It however makes the use of the classes
complicated because one has to pick up and compose the
modules that provides optional features with the modules
that provides core features manually. We propose decorators
as a solution to the problem. Decorators are a simple exten-
sion of mixins. One of the important differences of deco-
rators from mixins is automatic composition: decorators are
intended to be composed with classes automatically by infer-
ring the set of decorators from the use of objects, which we
call decoration inference. This paper sketches and demon-
strates decorators and decoration inference through simple
and small examples. It also gives and discusses issues to re-
alize decorators.

1. Introduction

It is natural today for better modularity to separate op-
tional features from core features when we design classes.
For example, the java.io package in Java uses the decora-
tor pattern (Gamma et al. 1995) instead of inheritance to
provide input and output streams (e.g. FileInputStream)
with a variety of features such as handling character en-
codings (e.g. InputStreamReader), data compression (e.g.
ZipInputStream), buffering (e.g. BufferedInputStream)
and encryption (e.g. CipherInputStream). There are also
more advanced techniques for modularity such as multiple
inheritance, mixins (Bracha and Cook 1990), traits (Schirli
et al. 2003), and incomplete objects (Bettini et al. 2011).
These fine-grained modules make the composition com-
plicated. We have to compose them with core classes or
objects manually to use optional features, even though the
necessary modules are clear in many cases. Moreover, be-
cause different modules have different dependencies with
respect to composition, it is sometimes painful to change

Tetsuo Kamina

Ritsumeikan University
kamina@cs.ritsumei.ac.jp

code to use a different set of optional features. For example,
it is common in Java to read the content of a text file by
line by (1) creating a FileInputStream object, (2) wrap-
ping it with InputStreamReader and BufferedReader
in the order, and (3) calling the readLine method to
the BufferedReader object.! To read the context of a
binary file, on the other hand, we usually (1) create a
FileInputStream object as the previous example, (2) wrap
it with BufferedInputStream and DataInputStream in
the order, and (3) call the readByte and similar methods
to the DataInputStream object. Therefore, if we change a
program that reads a text file to the one that reads a binary
file, we have to change not only the code to read the content
but also the code for composition.

We propose decorators as a solution to the problem. Dec-
orators are similar to mixins but they are composed im-
plicitly with classes and other mixins. This implicit com-
position, which we call decoration, is performed when
each object is created. Which decorators are composed
depends on the use of each object. The implicit com-
position makes programmers free from composing fine-
grained modules manually. For example, all that one has
to do to read the context of a text file by line is to create
a FileInputStream object and then call the readLine
method to it if InputStreamReader and BufferedReader
are decorators. Similarly, to read the content of a binary
file, one creates a FileInputStream object and then calls
the readByte method to it if BufferedInputStream and
DataInputStream are decorators.

Our notable feature is decoration inference that collects
the set of necessary decorations automatically by analyz-
ing how the objects are used. Decoration inference is sim-
ilar to type inference for first class messages (Miiller and
Nishimura 2000) and records (Rémy 1994) in ML families
of languages. Decoration runs at runtime but decoration in-
ference runs before runtime.

In this paper, we sketch and demonstrate decorators and
decoration inference. We also give and discuss issues to re-
alize decorators. For easy understanding, we use a hypothet-
ical language that extends Scala with decorators.

IThe Files class available as of Java7 provides the readAllLines
method to read all lines from a file by just specifying the path to a file
and the character encoding. It however cannot be a solution essentially.



1

2

3

4

9

11

12

abstract class InputStream{ abstract def read(); }

class FileInputStream(f:File) extends InputStream{...}

trait Reader{
abstract def reads(cbuf:Array[Char],
offset:Int, length:Int):Int;}
trait InputStreamReader extends Reader
decorates InputStream{
def setEncoding(cs:Charset) :Unit={...}
override def reads(cbuf:Array[Char],
offs:Int, len:Int):Int={...}}
trait BufferedReader decorates Reader{
def setBufferSize(size:Int):Unit={...}
def readLine():String = {...}}

Listing 1. Reader and its decorators

val fr = new FileInputStream(aFile);

val lines : Iterator[String] =
Iterator.continually(fr.readLine())
.takeWhile(_ != null);

lines.foreach{println(_)};
fr.close();

Listing 2. A client of the Readers

2. Decorators

Decorators are similar to mixins but intended to be com-
posed with other classes implicitly. To this end, each deco-
rator has a decorates clause that specifies the classes, mix-
ins and decorators with which it is composed. We call such
classes, mixins and decorators decoratees.

Listing 1 reimplements, using decorators, InputStream,
Reader, and their subclasses found in the java.io package.
To allow one to create Reader objects from InputStream
objects, we declare Reader and InputStream as traits in-
stead of classes.

InputStreamReader adds two methods, setEncodings
and reads to InputStream (and its subtype) when that dec-
orator is composed with the decoratees. BufferedReader
similarly adds two methods, setBufferSize and readLine
to Reader.

One major difference from Scala’s trait is the approach
to composition. Listing 2 shows a simple client that prints
the content of a file line by line. In Scala, composition is
always explicit and thus the client code is invalid, because
FileInputStream does not declare the readLine method.
When writing the code in line 3, one may eventually become
aware that, to use readLine, FileInputStream must be
composed with InputStreamReader and BufferedReader.
Then, one must go back to and reedit line 1. This happens
always when one requires additional features.

In our mechanism, on the other hand, composition is im-
plicit; one does not need to write composition. The necessary
decorators are automatically inferred from the client code.
Therefore, the client code in Listing 2 is valid.

FileInputStream

e
— InputStreamReader

—_— _
close:Unit Unit BufferedReader —
‘ —
— reads:(...) Int
—_—

readLine:Unit String

Figure 1. Decorator tree for FileInputStream

3. Decoration inference

Decoration inference finds the set of decorators to be com-
posed by analyzing the use of each objects statically. The
inference process consists of two steps, namely constraint
building and decorator finding.

The constraint building uses similar technique to the type
inference of records in ML family of languages and first-
class messages in object-oriented languages. In Listing 2,
the objects of FileInputStrean are used at two sites. The
first use is receiving the call to the method readLine in
line 3. The second use is receiving the call to the method
close in line 6. Therefore, the decoration inference build
a constraint fr < (FileInputStream A {readLine
Unit — String} A {close : Unit — Any}).

To find a suitable set of decorators, we have to have the set
of decorators that can be composed with FileInputStream.
Figure 1 shows the feature tree for FileInputStream. It is
easy to build the tree if we have the full set of decorators.
Because decorators specify the target type of decoration, we
can know the set of decorators for FileInputStream. Here,
it is a singleton that has only InputStreamReader. We
also can get the set of decorators for InputStreamReader,
which is a singleton that has only BufferedReader.

Finally, we fix the necessary decorators and its composi-
tion order by finding the paths to the called methods. From
the constraint, we know that the result of the composition
must have the readLine and close methods. There is no
decorator on the path from FileInputStream to close
and are InputStreamReader and BufferedReader on the
path from FileInputStream to readLine. We thus con-
clude that we have to compose InputStreamReader and
BufferedReader with FileInputStream in that order.

4. Discussions

There are of course several technical issues to realize deco-
rators. In this section, we show three of the issues.

4.1 Combination with type inference

It is not trivial to support both decoration inference and type
inference. Modern statically-typed languages support type
inference. It infers types of expressions and variables based
on their use in the program. To support decorators in such
languages, decoration inference must be compatible with
type inference.



FileInputStream
BufferedInputStream InputStreamReader
DataInpﬁtStream Buffere(;iReader

\
= —a—

readLine:Unit String readLine:Unit String

Figure 2. Ambiguous decorator tree for FileInputStream

Supporting these two inferences is, however, problematic.
Type inference often assumes that expressions are complete,
i.e., it simply rejects the expressions and variables if it cannot
find any type for them. Decoration inference on the other
hand must run on incomplete programs and fix them by
adding decorators to the expressions that create objects.

It is not a solution to run decoration inference before type
inference. This is because decoration inference depends on
the types of the expressions that use the objects whose types
are not complete.

4.2 Ambiguity

Decorator inference is not trivial if there are two or more
decorators in the decorator tree that provide methods with
the same name and type. Minimizing the number of selected
decorators is one candidate of the solutions, although of
course it does not work fine with all cases.

One example of such cases that are easy to be solved
is a method that calls close to a FileInputStream ob-
ject but does not call readLine to it (i.e., lines 2-5 are
omitted from Listing 2) and the FileInputStream class
and BufferedReader decorator provide it. The constraint
for the object, say fr, is fr < (FileInputStream A
{close : Unit — Any}) and the decorator tree for
FileInputStream extends Figure 1 with the close method
as another child of BufferedReader. Naive decorator in-
ference fails to find a set of decorators because there are
two candidates, i.e., the empty set and the set containing
InputStreamReader and BufferedReader. In this case,
we can easily choose the empty set by minimizing the num-
ber of selected decorators.

There is also, however, an example of problematic cases
in practice. Suppose a method that calls only readLine
to an FileInputStream object and the two decorators
BufferedReader and DataInputStream, which is defined
as follows?:

traint BufferedInputStream decorates InputStream{...}
trait DataInputStream decorates BufferedInputStream{

def readLine():String={...}}

In this case, the constraint for the object, say fr, is fr <
(FileInputStream A {readLine : Unit — String})

2 There must be a discussion on how to design decorators. We suppose
that DataInputStream should decorate Buf feredInputStream instead
of InputStream because use of Buf feredInputStream is always recom-
mended.

and the decorator tree for FileInputStream is Figure 2.
Naivedecoration inference again fails because there are two
candidates, those are, the set of Buf feredInputStream and
DataInputStream and the set of InputStreamReader and
BufferedReader. We cannot choose one set because their
size are the same.

4.3 Modular decoration over methods

Modular decoration over methods is necessary It is common
that a method uses objects created in other methods. We call
the former method a builder method and latter methods con-
sumer methods. Decoration over methods composes decora-
tors with core classes depending on how the builder method
use them. We say it is modular if it does not check the body
of each method more than once.

The following code demonstrates the advantage. It is a
re-implementation of Listing 2. The method builder cre-
ates a FileInputStream object and returns it. The method
consumer first calls builder to get an object and then calls
readLine and close on the object.

def builder(){ new FileInputStream("some file"); }
def consumer (){
val fr = builder(); /* same to Listing.2+%/; }

Builder methods have to compose different sets of deco-
rators depending on consumer methods to support the mod-
ular decoration between methods. For example, the method

builder in the above code must compose InputStreamReader

and BufferedReader with FileInputStreanm as requested
by the method consumer.

Acknowledgments

We would like to thank the anonymous reviewers of the NOOL
2016 workshop for their comments and suggestions on an early
version of the paper. We also thank Hidehiko Masuhara and the
members of his research group PRG for discussions on the work.

References

L. Bettini, V. Bono, and B. Venneri. Delegation by object compo-
sition. Sci. Comput. Program., 76(11):992-1014, Nov. 2011.

G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA/E-
COOP’90, pages 303-311, 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., 1995. ISBN 0-201-
63361-2.

M. Miiller and S. Nishimura. Type Inference for First-Class Mes-
sages With Feature Constraints. International Journal of Foun-
dations of Computer Science, 11:29-63, 2000.

D. Rémy. Type inference for records in natural extension of ML.
In Theoretical aspects of object-oriented programming: types,
semantics, and language design, pages 67-95. MIT Press, 1994.

N. Schirli, S. Ducasse, O. Nierstrasz, and a. Black. Traits: Com-
posable units of behaviour. Lecture Notes in Computer Science,
2743:248-274, 2003.



