
Delegation Revisited
Reuse Mechanisms in a Statically Typed, Expression-Oriented Language

Jonathan Aldrich
Carnegie Mellon University

aldrich@cs.cmu.edu

Alex Potanin
Victoria University of Wellington

alex@ecs.vuw.ac.nz

Abstract
How should code reuse be supported in a statically-typed,
expression-oriented programming language? Neither function-
based reuse nor class-based inheritance provides a good
solution in this setting. We question the requirements for
code reuse, proposing that future work evaluate whether
open recursion is really needed to support cases commonly
seen in industry. In addition, we explore the design space of
forwarding and delegation mechanisms, finding that there
are solutions that are surprisingly expressive despite their
simplicity.

Function-based reuse works well at the small scale, but
at the medium scale we would like to compose groups of
functions and perhaps state (i.e. objects). Statically-typed
inheritance-based reuse works with classes as top-level dec-
larations, but this choice is incompatible with an expression-
oriented language design. First-class classes restore expres-
sion orientation, but make static typing complex.

Wyvern is a new secure object-oriented language in sore
need of a code reuse functionality. Being object-oriented
aficionados we discuss different ways delegation can be
implemented in Wyvern exploring different possibilities
similar to Jones et al. exploring inheritance [2].

1. Reuse in a Statically-Typed,
Expression-Oriented Setting

An expression-oriented programming language is built pri-
marily out of expressions that reduce to first-class values.
This design provides significant expressiveness benefits com-
pared to languages that provide some abstractions only as
top-level declarations. Similarly, statically typed program-
ming languages offer compelling benefits for understanding
programs at scale and for building effective tools. A language

[Copyright notice will appear here once ’preprint’ option is removed.]

that combines these characteristics could offer outstanding
benefits to programmers, but it has been difficult to develop a
good design that can provide good code reuse while keeping
the type system simple enough to be usable. The most notable
prior design in this space required complex typing mecha-
nisms such as row polymorphism to reason about first-class
classes [8].

Functional languages make up some of the most success-
ful expression-oriented languages to date, and good static
type systems have been developed. However, while func-
tions provide excellent reuse at the small scale, libraries
and frameworks benefit greatly from medium-scale reuse
abstractions that combine multiple functions into objects [1]
and combine object descriptions using mechanisms such as
inheritance. Dynamically typed object-oriented languages
such as Smalltalk provide excellent expressiveness, but lack
static typing. Statically-typed object-oriented languages, in
contrast, have tended to support classes as top-level declara-
tions, limiting expressiveness so that classes cannot be passed
around as first-class objects, but keeping the type system
relatively simple. A notable exception is Racket, which pro-
vides (gradual) static typing and first-class classes, at the cost
of requiring more complex typing mechanisms such as row
polymorphism [8].

In the Wyvern project, we are seeking to develop an
expression-oriented language that supports good reuse facili-
ties with a relatively simple, albeit carefully designed, static
type system. We start with a pure object-oriented core that
models objects as records with methods and fields as mem-
bers, following Bruce et al. [3]. Our model considers classes,
modules, and other extensions as simply additional conve-
nient “sugar” that can be translated to a pure object-oriented
core [6]. For example, in Wyvern’s design a “class” is simply
an object with a factory method to create “instances”. To
promote simplicity and expressiveness, Wyvern’s subtyping
relation is structural; support for nominal types is provided
thorugh a separate tagging mechanism [4].

This paper explores whether it is possible to support an
expressive object-level reuse mechanism in this setting, with-
out sacrificing the simplicity of the static type system or
the expression-oriented nature of the language. To remain
expression-oriented, we seek to avoid tying our reuse mech-

1 2016/10/25

class AbstractCollection {
public abstract int size ();
public int isEmpty () {

return size() == 0;
}

}

Figure 1: java.util.AbstractCollection code excerpt

anism to statically-declared classes, and so like Jones et al.
we seek something close in expressiveness to object inheri-
tance without classes [2]. Considering mechanisms such as
delegation is inspired by our initial investigation showing that
delegation-based formalism captures type state in a simpler
and richer fashion than a class-based formalism [5].

The next section explores whether we really need a mech-
anism for reuse that includes open recursion, the source of
much of the complexity in the semantics of inheritance. We
follow with a section that considers a variety of other mecha-
nisms that could support open recursion in the new patterns
of building open recursion out of simpler primitives in the
(hopefully rare) cases when it really is needed.

2. The Need for Open Recursion
As open recursion is the source of considerable complexity
when reasoning about inheritance and related delegation
mechanisms [5], we can hope to keep our type systems
(and reasoning systems built on top of them) simpler if
the language does not build open recursion into its reuse
mechanism.

How important is it for a reuse mechanism to support
Open Recursion? A recent empirical study found that the
median program in a Java code corpus used downcalls in 34%
of relationships between classes – and downcalls indicate a
use of open recursion [10]. This data initially makes it seem
that open recursion is commonly needed.

However, the study did not consider whether designs
that use downcalls could be written without them. We will
show an example of how the open recursion in java.util.

AbstractCollection could be replaced by simple forward-
ing by separating core functionality from overrides in the
forwarding chain.

Consider the design of java.util.AbstractCollection
in Figure 1. Here the isEmpty() method includes a downcall
to the size() method. However, this design could perhaps be
refactored into a design that uses forwarding, without open re-
cursion. The AbstractCollection constructor could take
a BasicCollection argument that implements size() and
other basic methods in terms of the appropriate data struc-
tures, and AbstractCollection would forward calls to
size() down to the underlying collection. If a programmer
wants to override methods such as isEmpty(), that can be
done by in turn wrapping the AbstractCollection. This
design has the drawback of possibly requiring two objects to
support both the basic functionality and the overrides, but it

module abstractCollection

resource type BasicCollection
def size (): Int
// other methods

resource type Collection extends BasicCollection
def isEmpty (): Bool
// other methods ...

def make(delegator: BasicCollection): Collection
new

forward BasicCollection to delegator
def isEmpty (): Bool = (delegator.size() == 0)

Figure 2: An AbstractCollection in Wyvern

gains considerable simplicity by not requiring open recursion.
One such example is shown in Wyvern in Figure 2.

We hypothesize that a language design that provides
a forwarding composition mechanism, without the open
recursion in inheritance and delegation, could support many
of the designs identified by Tempero et al., and we hope that
future empirical studies could evaluating this hypothesis.

3. Exploring Delegation in Wyvern
Our first proposal for delegation support in Wyvern builds a
little syntactic sugar on simple function forwarding to express
most inheritance patterns. In Figure 3, the type of Animal
describes instances that can eat and swallow while a Dog

can also bark. When we construct an instance of an Animal

we distinguish between a current instance being created
(animalSelf) and the instance that we might be extending
(childSelf) that will be given to us as a parameter to a
method that is delegated to the Animal. Thus, an animal can
have a local version of eating and a dog that happens to be an
animal can have its eating delegated to the animal instance.

The support for such downcalls is provided by the
delegate T to x construct which looks at whether each
method m in T is defined with the same signature in the cur-
rent new statement (in which case it does nothing) or if it is
defined in the type of x (in which case a wrapper is generated
that directly calls x.m) or finally if it is defined in the type
of x with the same signature and an extra self parameter (in
which case a wrapper calls x.m(..., this)).

We believe that making delegation explicit is better than
implicitly allowing the superclasses to interact with sub-
classes using downcalls (or breaking “uniform identity” as
defined by Jones et al. [2]) which our preliminary investiga-
tion of the Qualitas Corpus [9] shows to be occurring in 8%
of the extended classes and is a potential source of hidden
bugs and unintended functionality. In general, inheritance
introduces implicit rules about code execution that are not
obvious to the programmer, and thus we argue it increases
complexity.

2 2016/10/25

type Animal
def eat()
def swallow ()

type AnimalDelegate
def eat(self:Animal)
def swallow ()

type Dog extends Animal
def bark (): String

def makeAnimal (): AnimalDelegate = new animalSelf =>
def eat(@Self childSelf:Animal)

childSelf.swallow ()
animalSelf.swallow ()

def eat() = new LocalStuffToDo ()
def swallow () = new Unit()

def makeDog(base:AnimalDelegate):Dog = new
delegate Animal to base
// the ?delegate? declaration above is equiv. to:
// def eat() = base.eat(this)
def bark (): String = ‘‘Woof ’’
def swallow (): Unit = new Unit()

val base:AnimalDelegate = makeAnimal ()
val a:Animal = makeDog(base)
a.eat() // Dog.swallow(), then Animal.swallow ()
a.bark() // ‘‘Woof ’’

Figure 3: Example of Delegation in Wyvern

4. Where To Next?
Our Wyvern proposal above is just the first of the ones we
intend to discuss in the presentation. Although it solves
the technical problem, there is implementation complexity
showing in the form of an extra type (AnimalDelegate) and
an extra explicit self parameter (one for the current object
and one for the original object which are of different types!).
Can we do better?

One option we will discuss is “The Dylan/CLOS Solu-
tion”: every method takes self as a parameter, but it defaults
to the receiver. There is a syntax for specifying a replacement.
So x.m() passes x as self, but something like x.m(self=y)
replaces it. In a typed setting there is still some complex-
ity because the passed-in self parameter has a different type
than the (lone) parent object. A simple example is shown in
Figure 4.

A second option to discuss is to provide a Forwarding
Construct that does not pass “self”. This is less expressive
(forwarding, not delegation) but is semantically clean and
gets rid of all the ugliness above. We intend to explore (and
push) the limits of the expressiveness of forwarding in our
talk.

A third option is to make the Parent have a Pointer to the
Child (but potentially awkward due to either recursive initial-
isation, or reusing the same parent with multiple children).
Uniqueness types or a recursive initialisation primitive (e.g.
placeholder types by Servetto et al. [7]) could facilitate this,
with the latter likely being a better solution to the problem.
While we avoid the extra types and awkward self parameters,
we will pay the space cost of explicit extra pointers to the
child and it would make it harder to merge objects.

A fourth alternative is provide a CLASS construct that
builds everything above inside it and while “under the covers”

// This is per type not per method solution as first try.
type Animal

def eat()
def swallow ()

type Dog extends Animal
def bark (): String

// Self is assigned mine (this) by default.
def makeAnimal(self:Animal = mine): Animal = new mine =>

def eat()
self.swallow ()
mine.swallow ()

def swallow () = new Unit()

def makeDog(self:Animal):Dog = new mine =>
delegate Animal to self
// the ?delegate? declaration above is equivalent to:
// def eat() = self.eat()
def bark (): String = ‘‘Woof ’’
def swallow (): Unit = new Unit()

val a:Animal = makeAnimal ()
val d:Animal = makeDog(a)
d.eat() // calls Dog.swallow(), then Animal.swallow ()
d.bark() // ‘‘Woof ’’

Figure 4: Alternative “Dylan-Style” Example of Delegation

classes are still implemented in terms of delegation the
programmer does not need to deal with the complexity. This
solution hides as much complexity as the usual class based
inheritance, but at least it can be explained (and perhaps
typed) in terms of expression-oriented primitives.

References
[1] Jonathan Aldrich. The power of interoperability: Why objects

are inevitable. In Onward! 2013, pages 101–116. ACM, 2013.

[2] Timothy Jones, Michael Homer, James Noble, and Kim Bruce.
Object inheritance without classes. In ECOOP, 2016.

[3] Benjamin Pierce Kim Bruce, Luca Cardelli. Comparing object
encodings. Information and Computation, 155(1/2):108–133,
1999.

[4] Joseph Lee, Jonathan Aldrich, Troy Shaw, and Alex Potanin.
A theory of tagged objects. In ECOOP, pages 174–197, 2015.

[5] Du Li, Alex Potanin, and Jonathan Aldrich. Delegation vs
inheritance for typestate analysis. In FTfJP, 2015.

[6] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin
Chung, Alex Potanin, and Jonathan Aldrich. Wyvern: A simple,
typed, and pure object-oriented language. In MASPEGHI ’13,
pages 9–16, New York, NY, USA, 2013. ACM.

[7] Marco Servetto, Julian Mackay, Alex Potanin, and James
Noble. The billion-dollar fix. In ECOOP, volume 7920, pages
205–229. Springer Berlin Heidelberg, 2013.

[8] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas,
Sam Tobin-Hochstadt, and Mattias Felleisen. Gradual typing
for first-class classes. In OOPSLA, pages 793–810, 2012.

[9] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. Qualitas
corpus: A curated collection of Java code for empirical studies.
In Asia Pacific Software Engineering Conference, 2010.

[10] Ewan Tempero, Hong Yul Yang, and James Noble. What
programmers do with inheritance in java. In ECOOP, pages
577–601. Springer, 2013.

3 2016/10/25

