
THE ESSENCE OF SUBCLASSING 
Ole Lehrmann Madsen1, Birger Møller-Pedersen2 

1The Alexandra Institute & Aarhus University 
2Department of Informatics, University of Oslo, Oslo, Norway 

olm@alexandra.dk,  birger@ifi.uio.no 
 

The essence of subclassing is the ability to represent classification hierarchies reflecting domain concepts. With the right class 
mechanism there is no need for a separate type/subtype mechanism, and general classes may have behavior specifications so that 
subclassing also implies code reuse. Sometimes the application is so well defined (known) that developers may readily start out with 
classes that represent domain concepts. Singular objects have been around for some time, so a new kind of language with equal 
support for both objects and classes would simply ask for tool support for objects in the spirit of e.g. Self and support for classes as 
described above. 
 

1. Introduction 
The class/subclass mechanism as introduced in SIMULA 
[1]  was originally intended for representing 
classification hierarchies and thus also as a mechanism 
for defining the type/subtype of variables, parameters 
and return types. An inherent property of this mechanism 
was that subclasses ‘inherited’ (reused) the code of the 
superclass, i.e. the code of the methods of the superclass. 

Modeling languages [2] maintain class/subclass as a 
mechanism for representing classification hierarchies. 
Most mainstream programming languages support 
class/subclass in the style of SIMULA, but in practice 
they are often used as an implementation mechanism for 
reuse resulting in messy and unstructured class libraries.  

Starting with [3], discussing the pros and cons of 
prototypical languages, followed up by Self 
(http://www.selflanguage.org), there are now a number 
of prototypical languages where the class/subclass 
mechanism is abandoned, and there is now even a debate 
on what the concepts of class/subclass are good for. The 
most recent [4] argues that class/subclass is only for 
incremental program structuring, and even that classes 
are considered harmful.  

2. What classes were meant for 
SIMULA introduced class as a type, influenced by 
record class/subclass proposed by Hoare, where the 
intention was to classify data plus operations. The 
examples speak for themselves: vehicle, car, bus, 
truck where common properties are described in 
vehicle and program fragments may manipulate 
vehicles – being cars, busses and/or trucks. 

In the same way as predefined types like integer and 
Boolean ensure that only valid operators are applied to 
values of these types, the class/subclass mechanism was 
introduced in order to type reference variables so that 
only valid operations are performed on objects. 

Since Morrison [5]  it has been generally accepted 
that a type is not just a set of values. A class represents a 
concept, it describes the intension of the concept in the 
form of attributes. The objects of the class represent the 
extension of the concept. A subclass extends the 
description of the intension and the extension of the 
subclass is a subset of the extension of the superclass. 

3. What classes are often used for 
Reuse of code has been put forward as the main 
advantage of object-orientation in contrast to the 
modeling capabilities of object-orientation.  However, 
unrestricted use of class/subclass for reuse often leads to 
messy and badly structured class hierarchies where an 
instance of a subclass may not be substituted for an 
instance of its superclass. Subclass substitution was an 
essential property of SIMULA – and it is surprising that 
this had to be reinvented as the Liskov substitution 
principle. Using class/subclass for pure reuse should be 
avoided/prohibited. 

Unfortunately, it is not possible for the compiler to 
check that a subclass is behavioral compatible with its 
superclass. Subtyping in terms of method signatures is 
easy but not sufficient, as real superclasses may have 
behaviour. Class invariants and pre- and post-conditions 
on methods [6] may help on this. However, at the end of 
the day, it depends on the discipline of the programmers 
– to program is to understand – it is not to get away with 
it. 

Language designers considering class to be a reuse 
mechanism often add a separate type-system in order to 
make (static) type checking. Types/subtypes in this 
context is then often based upon sets of method 
signatures, although it does have to be like that. 

4. A class is more than method signatures 
Type systems that only rely on signatures will lack the 
opportunity to define general types that have behavior 
specified. A simple example is a general class Shape  
that defines a center point and a move method that 
simply moves the graphical figure by moving the center.  
 

 Shape: { 
  centre: obj Point;  
  final move(p: obj Point):{ 
    centre = p } 

   } 
 
Code that relies on the property that graphical figures are 
moved this way will work for any special Shape object, 
i.e. objects of any subclass of Shape may take the place 
of a Shape object. 

A related issue is how to support 
frameworks/libraries/APIs and generics without classes? 



 

5. Reuse of code without subclassing 
The above is an example of code reuse that comes with 
subclassing. It ensures that all objects of subclasses of 
Figure will behave the same way when moved. Not all 
languages support this kind of subclassing, some 
language allow any method to be redefined completely 
(apart from parameters) in subclasses, and some 
languages allow that some of the properties of the 
superclass do not apply to objects of subclasses (e.g. 
Eiffel and Grace). 

In 1992, it was demonstrated that for code reuse, 
there would be no reason to (mis)use subclassing. The 
mechanism of part-objects [7] readily provides code 
reuse. Given a class Addressable with properties 
street and number and a method print, then any 
class of objects that should be addressable simply gets a 
part-object addr of type Addressable, and the print 
method is accessible via addr.print(). Note that this is 
not full-fledged delegation, but rather method 
forwarding. By providing renaming constructs it would 
even be possible to avoid the ‘addr.’. 

 
Addressable: { 
  street: obj String;  
  no: obj Int;  
  print: { 
    inner; 
    -- print street and no 
    } 
} 
Person: { 
  name: obj String; 
  addr: obj Addressable{ 
    void print(){ print name } 
  } 
} 
Company: { 
  logo: obj String 
  addr: obj Addressable{ 
    void print(){print logo } 
  } 

   } 
 

 As demonstrated above, the method print may even 
be tailored to wherever there is an Addressable part-
object, simply by defining the part object as a 
specialization of Addressable, and as this specialization 
is done in the scope of the class with the part-object, the 
attributes of this class are visible in the specializations.  

The GO language (https://golang.org), is a widely 
used language without classes. It has struct types (with 
methods as functions with a struct reference as the first 
parameter), and it uses anonymous part-objects instead 
of subclassing. However, it is not possible to specialize 
part-objects to the structs they are in (as above), and they 
of course have the same problems with name conflicts as 
in multiple inheritance. 

6. Typing/subtyping revisited 
In [4] the benefits of purely prototype-based languages is 
partly taken from [3], however, they have not mentioned 
that [3] also mentions a major drawback: Even if you 
remove classes as types, you will have to have types for 
predefined things like integer, Booleans, etc. 

Types/subtypes, parameterized types, co-/ 
contravariant types and static versus dynamic type 
checking has been an issue for many years. In [8] the 
relationship between subclassing and subtyping is 
discussed. It is argued that an approach with a 

combination of static and dynamic type checking gives a 
reasonable balance between static and dynamic type 
checking. It is also concluded that this approach makes it 
possible to base the type system on the class/subclass 
mechanism including covariance, which from a 
modeling point-of-view is preferable. 

7. Classification of actions 
It is common practice in object-oriented modelling and 
programming to represent (physical) objects such as 
vehicles, persons, and flight reservations as objects. The 
same is the case for values such as numbers, points, and 
vectors and although values are timeless concepts, they 
must be represented as objects or other data structures. In 
Beta, we distinguish between objects and values as 
described in [9] . 

 In addition to objects and values, a program 
describes a (possible parallel) sequence of actions being 
executed. Actions are thus also phenomena as objects 
and values that must be represented in the program 
execution. Procedures and process types are abstraction 
mechanisms that may describe a set of instances of 
action-sequences.   

 As first pointed of by Jean Vaucher ([10]), 
procedures may also be organized in a 
procedure/subprocedure hierarchy similar to a 
class/subclass hierarchy. In Beta, this is covered by the 
general notion of pattern/subpattern that may define both 
class pattern/subpatterns of objects (for parallel 
execution) and procedure pattern/subpatterns (for 
sequential execution). 

 Such patterns are useful for defining control 
abstractions, including iterators. 

 For concurrency abstractions, the use of specialized 
actions is especially useful. In Beta, it is possible to 
define a Monitor abstraction (originally due to Jean 
Vaucher) in the following way. 

 
Monitor: 
  { entry:  
      { do M.wait; inner; M.signal } 
    M: obj Semaphore 
  } 
Buffer: Monitor 
  { put: entry{ … add to B … } 
    get: entry{ … get from B … } 
    B: obj Queue 
  } 
 
The methods put and get are submethods of entry 

and the actions of entry works as a wrapper for the 
actions in put and get (these actions are executed when 
executing inner). This implies that at most one of put 
and get are executed at the same time. 

 The use of method pattern/subpattern is further 
described in ([11] , [12], [13]).  

8. The programming process 
Black et al [4] describe “the essence of inheritance is its 
ability to override a concrete entity, and thus effectively 
turn a constant into a parameter”. They also state:” 
Introducing a new concept by means of a series of 
examples is a technique as old as pedagogy itself”, and 
they advocate inheritance as a technology to support 
writing a series of example programs.   



 

It should be clear from the above, that we do not 
agree that the essence of inheritance is overriding - the 
essence of subclassing is the ability to represent 
classification hierarchies. 

Regarding the programming style as a series of 
examples, we agree, but this does not imply that these 
examples should be related through inheritance. The 
programming process is exploratory: (1) In the initial 
phases you have to understand the individual objects and 
their behavior without necessarily understanding the 
relations between objects. (2) In subsequent phases 
where you have more knowledge, you may classify your 
objects into classes and subclasses – to form a hierarchy 
of concepts. (3) You then apply this knowledge in the 
further process to understand the relations between 
objects. 

This is a simplified description of the process of 
knowledge [12]. In [14] it is further pointed out that 
languages with singular objects and/or prototype-based 
languages like Self (with cloning and delegation instead 
of subclassing) are useful for supporting (1), but it is a 
must to be able to re-organize objects into classes in 
order to obtain structure on your program.  

Teaching students to use a programming style where 
you write some code, extend it by redefining methods, 
etc. may adversely affect their ability to write well-
structured software systems.  

There is of course a difference when using class-
libraries / frameworks where you may not modify the 
source. But here you should use other techniques such as 
inheritance from part objects and/or wrappers. 

9. Challenges  
We do not see redefining the essence of subclassing as 
one of the major challenges in making new object-
oriented languages. However, there are some challenges 
related to multiple classification, and the support for 
objects and classes. 

Subclassing as described above can be used to 
represent tree-structured classification hierarchies. Many 
languages have support for so-called multiple 
inheritance, however, mainly only as a method for code 
reuse. In [12], we have discussed various challenges for 
further supporting the representation of classification 
hierarchies. This includes multiple classification – this is 
similar to multiple inheritance, but with an emphasis on 
modeling.  An example is that people may be 
independently classified according to their nationality, 
profession, religion, etc. Multiple inheritance for this 
will lead to an exponential number of combinations. We 
are not aware of (mainstream) languages supporting 
multiple classification. In addition, objects may evolve 
over time and this may even imply change of class 
membership. Some languages – at a primitive level – 
support dynamic class membership, but we still have a 
challenge with representing dynamic classification in 
object-oriented languages. 

A programming language should support singular 
objects as well as classes, and the type system should be 
based on classes. The programming process should 
support reorganization of code and objects into class 
hierarchies as you obtain knowledge about your domain. 
Mechanisms like cloning and delegation may still have a 
role, but delegation then understood literally as 
delegating responsibility. In [15] it is illustrated that in 
order to have a design pattern that both support state 

machines with composite states, and subclassing of state 
machines, contained states should be able to delegate 
event method calls to their enclosing state. Usual design 
patterns represent composite states by state subclasses of 
the enclosing state class. A delegation approach to 
composite states implies that subclassing may be used 
for specialization of state machines.  

REFERENCES 

1. Dahl, O.-J., B. Myhrhaug, and K. Nygaard, SIMULA 67 Common 
Base Language (Editions 1968, 1970, 1972, 1984). 1968, 
Norwegian Computing Center: Oslo. 

2. Madsen, O.L. and B. Møller-Pedersen. A Unified Approach to 
Modeling and Programming. in MoDELS 2010. 2010. Oslo: 
Springer. 

3. Borning, A., Classes versus Prorotypes in Object-Oriented 
Languages, in ACM/IEEE Fall Joint Computer Conference. 1986: 
Dallas, Texas. p. 36-40. 

4. Black, A.P., K.B. Bruce, and J. Noble, The Essence of Inheritance, 
in A List of Successes That Can Change the World. 2016, Springer 
International Publishing. 

5. Morris, J.H., Types are not Sets, in ACM Symposium on the 
Principles of Programming Languages (POPL). 1973, ACM. p. 
120-124. 

6. Hoare, C.A.R., Proof of Correctness of Data Representations. 
Acta Informatica, 1972. 1. 

7. Madsen, O.L. and B. Møller-Pedersen. Part Objects and Their 
Location. in TOOLS'92: Technology of Object-Oriented 
Languages and Systems. 1992. Dortmund: Prentice Hall. 

8. Madsen, O.L., B. Magnusson, and B. Møller-Pedersen. Strong 
Typing of Object-Oriented Languages Revisited. in Joint 
OOPSLA/ECOOP'90. 1990. Ottawa, Canada: ACM Press  

9. MacLennan, B.J., Values and objects in programming languages. 
ACM SIGPLAN Notices, 1982. 17(12): p. 70-79. 

10. Vaucher, J., Prefixed Procedures: A Structuring Concept for 
Operations. IN-FOR, 1975. 13(3). 

11. Kristensen, B.B., et al. Classification of Actions or Inheritance 
Also for Methods. in ECOOP'87 – European Conference on 
Object-Oriented Programming. 1987. Paris: Springer Verlag. 

12. Madsen, O.L., B. Møller-Pedersen, and K. Nygaard, Object-
Oriented Programming in the BETA Programming Language. 
1993: Addison Wesley. 

13. Madsen, O.L., Building Safe Concurrency Abstractions in 
Concurrent Objects and Beyond: Papers dedicated to Akinori 
Yonezawa on the Occasion of His 65th Birthday, G. Agha, et al., 
Editors. 2014, Springer Berlin Heidelberg. 

14. Madsen, O.L., Open Issues in Object-Oriented Programming. 
Software Practice & Experience, 1995. 25(S4). 

15. Møller-Pedersen, B. and R.K. Runde, State Pattern supporting 
both composite States and extension/specialization of State 
Machines, in PLoP 2016: PATTERN LANGUAGES OF 
PROGRAMS CONFERENCE. 2016: University of Illinois at 
Urbana-Champaign. 

 


