
Actors and Hot Objects ∗

Locks and Lock-Free Programming in the Encore Programming Language

Tobias Wrigstad
Uppsala University

Thorbiörn Fritzon
Spotify

Abstract
We present Hot Objects, actors which logically support processing
of multiple messages in parallel, in the Encore programming lan-
guage. The internal behaviour of Hot objects is encapsulated inside
an asynchronous interface. We discuss compositionality of Hot Ob-
jects and the reintroduction of locks into actor-based systems.

1. Introduction
Actor-based systems have been described as a natural way of adding
concurrency to object-oriented systems. By encapsulating a single
thread of control, actor systems maintain simplicity and facilitate
reasoning about objects’ states. By relying on asynchronous mes-
saging across actor boundaries, object composition is greatly sim-
plified, and deadlocks occur at higher levels of abstraction than in
systems based on threads and locks, where circular dependencies of
critical sections are hidden by object encapsulation.

Actor-based systems rely on saturation of a system for efficient
utilisation: unless there are fewer actors than cores, an actor-based
system can theoretically keep a machine busy.

Load-balancing in actor-based systems can be implemented
using work-stealing, where a core that runs out of work can migrate
one or more actors from other cores’ run-queues to avoid idling.
Again, this requires that there are busy enough actors in the system,
or there will be none to steal.

The popularity of actors in a program is key to making load-
balancing possible, and imbalance in popularity may destroy a sys-
tem’s scalability. By popularity, we mean the amount of messages
an actor receives in relation to others. An actor that receives rel-
atively few messages is unpopular, whereas an actor that receives
relatively many is popular. If popular actors are on the critical path
of less popular actors, the popular actors should be given higher
priority in the system to avoid starvation. (For simplicity, we forego
the discussion of different complexities for different messages.)

2. Example: Typical Service
Consider the following abstract description of a simple server sys-
tem S for a large number of clients. Each request in S is tied to
a particular user, and each user has a number of associated tokens.
These tokens may correspond to privileges, resources, offers etc.
Each token can be in two states—available or unavailable. An avail-
able token may correspond to a resource which a user may claim,
and an unavailable token may correspond to a resource which the
user has already “used up.” (The example is abstracted from real-
world systems used at Spotify.)

A naive actor model of this system uses one actor per client C1

. . . Cn, one actor A that maps user ids to available tokens, and

∗ Partly funded by the EU project FP7-612985 U P S C A L E: From Inherent
Concurrency to Massive Parallelism through Type-based Optimisations.

one actor U that maps user ids to unavailable tokens. A and U
perform some look-up operation—for simplicity imagine that all
data is stored in-memory in hash tables—and sends a reply to the
client (or fulfils some future value).

Since there is one connection to A and one connection to U
for each of the n clients, and one connection from A and B to
each client respectively, A and U are vastly more popular than each
individual client. Even maximally increasing the priority of A and
B, assigning them to a private core each which deals exclusively
with “it’s actor”, a sufficiently big machine will still not be able to
deal with requests to A and B fast enough as the remaining cores
allow too many clients making concurrent requests.

2.1 Solution 1: multiple copies of A and B

One solution to even out the popularity scores is to multiply A and
B. This has several positive consequences:

– Each actor must deal with a much lower number of requests

– Multiple requests of the same kind can be handled in parallel

In practise, this solution will not work if the hash-tables (data
bases) in A and B are mutable. To preserve the single thread of
control abstraction, each actor must have a copy of the entire hash
table—and changes will cause different maps to become outdated.
One possibility is to divide the data across all A actors (and similar
for B), but this requires an externally known load-balancing scheme
(e.g., mapping certain hash-ranges to certain actors), and scaling
now relies on an evenly distributed load.

2.2 Solution 2: Break Single Thread of Control
Another solution to this problem is to break the single thread of
control for actors and let actors process multiple messages simultan-
eously. This has the added bonus of being able to encapsulate any
load-balancing internally. This solution is similar to a thread-based
model, except that each actor has the opportunity to pull several mes-
sages at the same time, and carry them out—either as several concur-
rent activities inside each actor, or by exploiting synergy between
requests, or a combination. The key difference lies in pulling as
opposed to being operated on, as in the case for threads.

This is the solution we take in the Encore programming lan-
guage [2], which we are currently developing. Encore supports a
notion of Hot Objects, which are actors that optionally support eval-
uating messages in parallel. The rest of this extended abstract deals
exclusively with Hot Objects.

3. Hot Objects
The Encore language guarantees data-race freedom, which is
defined as the absence of read–write races on locations without
any intermediate synchronisation. Apart from reasons to avoid
data-races for correctness, their absence is mandated by the ORCA



garbage collection protocol [5] which Encore uses under the hood.
This allows Encore to issue field updates without write barriers, and
empowers each actor to garbage collect at its own leisure, without
waiting for anyone else in the system.

3.1 Lower Latency Through Synchronous Communication
The Encore Hot Object design decouples the implementation of a
Hot Object from its interface. While the interface of a hot object
is an asynchronous actor interface, communication may happen
synchronously under the hood. For short requests, avoiding message
passing overhead (allocating space for arguments, contention on
actor mailbox, etc.) may significantly reduce latency, especially
if the cross-call from the actor to the Hot Object is performed
immediately rather than the caller suspending itself, waiting for a
call-back. In the spirit of queue-delegation locking [7], a possible
implementation can test for contention (e.g., success or fail taking a
lock) and only turn the call into an asynchronous one if the expected
waiting time is too long (e.g., more than two other actors ahead in
the queue). This is similar to work by Kogan and Herlihy [8] where
synchronous calls are lifted to calls returning futures.

3.2 Lower Latency Through Full Concurrency
On the flip side of keeping the single thread of control but improving
the speed of message sends by making them synchronous is using
Encore’s lock-free type system [3] that supports implementation of
lock-free data structures with guarantees of data race-freedom. Im-
plementing lock-free Hot Objects allows all calls to be synchronous
with a guarantee that all processing of messages inside an actor is
written in such a way that conflicts are handled internally. Lock-free
data structures are inherently scalable, but are difficult to program.
While Encore’s type system will help a programmer avoid easy mis-
takes such as duplication of ownership, it will not solve coming up
with a lock-free protocol.

It is entirely possible to implement Hot Objects using Software
Transactional Memory, which is likely much simpler, but less per-
formant than lock-free data structures based on CAS.

3.3 Re-Introduction of Locks
In the middle of the above extremes sit the re-introduction of locks
in actor-based programs. While the encapsulation of locking be-
haviour destroys compositionality of objects in traditional object-
oriented programming, encapsulation of locks inside actor bound-
aries work to preserve compositionality of Hot Objects: as long as
locks only govern access to objects inside the Hot Object, the only
methods which are affected by the re-introduction of locks are the
methods of the Hot Object itself. Thus, deadlocks can only happen
due to a faulty implementation of a set of methods belonging to the
same object, whose composition is known by design.

Due to Encore’s type system, which is based on the Kappa
system of reference capabilities [4], statically determining what
data inside an operation belongs to the current actor is trivial, and
declaring locks on unencapsulated objects (which could for example
be shared with another actor) is not allowed.

Encore locks support nesting similar to the lock-ordering in Safe-
Java [1]. This allows e.g., protecting access to an entire hash-table
with a readers–writer lock, which can subsequently be acquired by
many, and thus allows several threads of control to navigate through
this data structure to places where a second, nested, lock can be
grabbed, e.g., a write-lock to update a single bucket in a hash-table,
or several threads sharing a bucket through a read-lock for looking
up available tokens for some user id.

4. Related Work, Discussion and Wrapping Up
Hot Objects in Encore are a form of actors useful for implement-
ing designs where a few actors are vastly more popular than others,

or where low latency is important, but not possible or feasible to
achieve by replicating data across lots of actors. Actors that process
several messages at a time is not new. For example, Henrio et al. [6]
define a notion of multi-threaded active objects, where unchecked
programmer assertions are used to determine if messages can run
in parallel. This is not expressive enough for Encore, since Encore
relies on guaranteed absence of data-races. In contrast, Östlund’s
Joelle [9] supports parallel message processing checked for non-
interference through an ownership-based effect system. This sys-
tem however cannot express the example above, as it cannot be
expressed as static non-interference.

While technically, Hot Objects implemented using locks reintro-
duce all the pitfalls of thread-based programming in the actor model,
there is a fundamental conceptual difference: locks are added inside
a single capsule, which cannot be composed with the surrounding
system in a way that introduces new dependencies between opera-
tions. It is of course possible to implement a system inside a single
parallel actor, but even then—the entry point of each “thread” is
known and inside just a single name space.

Hot Objects’ interfaces are identical to actors—they support
asynchronous communication which return future values. The un-
derlying implementation can be changed without changing the in-
terface: synchronous serial communication, concurrent data struc-
tures, software transactional memory, or locks. This allows late-
optimising the implementation of a system’s performance critical
places, without breaking compositionality.

In Encore, Hot Objects require different garbage collection than
the rest of the system. For example, a lock-free implementation of
a Hot Object will impose write barriers for fields, and a more costly
collection of objects because of the possible contention. By isolating
the places where multiple threads of control may manipulate the
same objects, we can keep the original design of the ORCA garbage
collector, and only pay overhead for contention in the places where
it is needed.

References
[1] C. Boyapati. SafeJava: A Unified Type System for Safe Programming.

Ph.D., MIT, Feb. 2004.
[2] S. Brandauer, E. Castegren, D. Clarke, K. Fernandez-Reyes, E. B.

Johnsen, K. I. Pun, S. L. T. Tarifa, T. Wrigstad, and A. M. Yang. Paral-
lel Objects for Multicores: A Glimpse at the Parallel Language Encore,
pages 1–56. Springer International Publishing, Cham, 2015.

[3] E. Castegren and T. Wrigstad. LOLCAT: Relaxed linear references
for lock-free programming. Technical Report 2016-013, Department of
Information Technology, Uppsala University, July 2016.

[4] E. Castegren and T. Wrigstad. Reference Capabilities for Concurrency
Control. In ECOOP 2016, volume 56 of LIPIcs, pages 5:1–5:26,
Dagstuhl, Germany, 2016.

[5] S. Clebsch, S. Blessing, J. Franco, and S. Drossopoulou. Implementa-
tion, compilation, optimization of object-oriented languages, programs
and systems workshop. In Ownership and Reference Counting based
Garbage Collection in the Actor World. ACM, 2015.

[6] L. Henrio, F. Huet, and Z. István. Multi-threaded Active Objects, pages
90–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[7] D. Klaftenegger, K. Sagonas, and K. Winblad. Delegation locking
libraries for improved performance of multithreaded programs. In
European Conference on Parallel Processing, pages 572–583. Springer,
2014.

[8] A. Kogan and M. Herlihy. The future(s) of shared data structures. In
Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, pages 30–39, New York, NY, USA, 2014. ACM.

[9] J. Östlund. Language Constructs for Safe Parallel Programming on
Multi-Cores. PhD thesis, Uppsala UniversityUppsala University, Com-
puting Science, Division of Computing Science, 2016.


