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Abstract

This paper identifies node affinity as an important
property for scalable general-purpose locks. Nonuniform
communication architectures (NUCAs), for example CC-
NUMAs built from a few large nodes or from chip multipro-
cessors (CMPs), have a lower penalty for reading data from
a neighbor’s cache than from a remote cache. Lock imple-
mentations that encourages handing over locks to neighbors
will improve the lock handover time, as well as the access
to the critical data guarded by the lock, but will also be vul-
nerable to starvation.

We propose a set of simple software-based hierarchical
backoff locks (HBO) that create node affinity in NUCAs.
A solution for lowering the risk of starvation is also sug-
gested. The HBO locks are compared with other software-
based lock implementations using simple benchmarks, and
are shown to be very competitive for uncontested locks
while being more than twice as fast for contended locks. An
application study also demonstrates superior performance
for applications with high lock contention and competitive
performance for other programs.

1. Introduction

The scalability of a shared-memory application is often
limited by contention for some critical section, such as mod-
ification of shared data guarded by mutual exclusion locks.
The simplest, and most widely used, test-and-test&setlock
implementation suffers from poor performance at high con-
tention: the more contested the critical section gets, the
lower is the rate at which new threads can enter it. This very
inappropriate behavior is mostly due to the vast amount of
traffic generated at each lock handover event.

Some alternative lock implementations’ traffic is less de-
pendent on the number of contenders, which is why their
lock hand-over rates do not decrease as significantly at high
contention. The simplest way to limit the contention traffic
is to apply some backoff strategy that causes the threads to
access the common lock variable less frequently the longer
they have waited. The more advanced queue-based locks
instead maintain a first come, first served order between the
contending threads. Each contender will only spin on the

dedicated flag set at its predecessor’s release of the lock, and
contenders ordered after it will not be affected [5, 16, 18].
However, the complicated software queuing locks are less
efficient for uncontested locks, which have led to the cre-
ation of even more complicated adaptive hybrid proposals
in the quest for a general-purpose solution [14].

Shared-memory architectures with a nonuniform mem-
ory access time to the shared memory (CC-NUMAs) are
gaining popularity. Most systems that form NUMA archi-
tectures also have the characteristic of anonuniform com-
munication architecture(NUCA), in which the access time
from a processor to other processors’ caches varies greatly
depending on their placement. In node-based NUMA sys-
tems; in particular, processors have much shorter access
times to other caches in their group than to the rest of the
caches. Recently, technology trends have made it attractive
to run more than one thread per chip, using either the chip
multiprocessor (CMP) and/or the simultaneous multithread-
ing (SMT) approach. Large servers, built from several such
chips, can therefore be expected to form NUCAs, since
collated threads will most likely share an on-chip cache at
some level [2].

Due to the popularity of NUMA systems, optimizations
directed to such architectures have attracted much atten-
tion in the past. For example, optimizations involving the
migration and replication of data in NUMAs have demon-
strated a great performance improvement in many applica-
tions [10, 12, 19]. In addition, since many of today’s appli-
cations exhibit a large fraction of cache-to-cache misses [3],
optimizations which consider the NUCA nature of a system
may also lead to significant performance enhancements.

On a NUCA, it is attractive from a performance point
of view to hand the lock to a waiting neighbor, rather than
the thread which has waited the longest time. Favoring the
neighbor will improve the lock handover time, as well as the
access to the critical data that most likely reside in its cache.
However, in such a scheme attention must also be given
to starvation avoidance. We have noticed that the existing
test-and-test&setlocks already give some unfair advantage
to the processor neighbors in the NUCA node where the
lock last was held. This will create more node locality and
will partly make up for the more traffic generated by the
test&set-based locks.

The goal of this work is to create a new set of locks that
efficiently exploit communication locality in a NUCA while



minimizing the potential risk of starvation. In order to be
generally usable, such a lock should scale to a large num-
ber of nodes, handle contended locks well, have reasonable
memory space requirements, and introduce minimal over-
head for the uncontested locks.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an introduction to several NUCAs. Background
and related work is presented in section 3. Our new NUCA-
aware locks are presented in section 4. In section 5 we
present performance results obtained on a 2-node Sun Wild-
Fire machine. A simple fairness and sensitivity study is per-
formed in section 6, and we conclude in section 7.

2. Nonuniform Communication Architectures

Many large-scale shared-memory architectures have
nonuniform access time to the shared memory. In order
to make a key difference, the nonuniformity should be
substantial—let’s say at least a factor of two between best
and worst unloaded latency. Most NUMA architectures
also have a substantial difference in latency for cache-to-
cache transfer—a nonuniform communication architecture.
A NUCA is an architecture in which the unloaded latency
for a processor accessing data recently modified by another
processor differs at least by a factor of two, depending on
where that processor is located.

DASH was the first NUCA machine [13]. Each DASH
node consists of four processors connected by a snooping
bus. A cache-to-cache transfer from a cache in a remote
node is 4.5 times slower than a transfer from a cache in the
same node. We call this theNUCA ratio. Sequent’s NUMA-
Q has a similar topology, but its NUCA ratio is closer to
10 [15]. Both DASH and NUMA-Q have a remote access
cache (RAC), located in each node, that simplifies the im-
plementation of the node-local cache-to-cache transfer.

NUCA Example NUCA Ratio

Stanford DASH ~ 4.5

Sequent NUMA-Q ~ 10

Sun WildFire ~ 6

Compaq DS-320 ~ 3.5

Future: CMP, SMT ~ 6–10

Sun’s WildFire system can have up to four nodes with up
to 28 processors each, totaling 112 processors [10]. Parts of
each node’s memory can be turned into an RAC using a
technique called coherent memory replication (CMR). Ac-
cesses to data allocated to a CMR cache have a NUCA ratio
of about six, while accesses to other data only have a NUCA
ratio of less than two.

Compaq’s DS-320 (which was also code-named Wild-
Fire) can connect up to four nodes, each with four proces-
sors sharing a common DTAG and directory controller [7].
Its NUCA ratio is roughly 3.5.

Future microprocessors can be expected to run many
more threads on a chip through a combination of CMP and
SMT technology. This can already be seen in the Pentium
4’s Hyperthreading and the IBM Power4’s dual CMP pro-
cessors on a chip. The Piranha CMP proposal expects eight

CMP threads to run on each chip [2]. Larger systems, built
from many such CMPs, are expected to have a NUCA ratio
of between six and ten depending on the technology chosen.

It is possible that several levels of non-uniformity will be
present in future large-scale servers. A simple example of
this would be one of today’s NUMA architectures populated
with CMP processors instead of traditional single-threaded
processors. This would create a hierarchical NUMA and
NUCA property of the system.

Not all architectures are NUMAs or NUCAs. The re-
cent SunFire 15k architecture can have up to 18 nodes, each
with four processors, memory, and directory controllers [4].
The nodes are connected by a fast backplane. It has a flavor
of both NUMA and NUCA. However, both of its NUMA
and NUCA ratios are below two. The SGI Origin 2000 is
a NUMA architecture with a NUMA ratio of around three
for reasonably sized systems [12]. However, it does not ef-
ficiently support cache-to-cache transfers between adjacent
processors and also has a NUCA ratio below two.

3. Background and Related Work

Ideally, synchronization primitives should provide good
performance under both high and low contention without
requiring substantial programmer effort. Mutual exclu-
sion (lock-unlock) operations can be implemented in a va-
riety of different ways, including: atomic memory prim-
itives; nonatomic memory primitives (load-linked/store-
conditional), and explicit hardware lock-unlock primitives
(CRAY’s Xmp lock registers, DASH’s lock-unlock oper-
ations on directory entries, or Goodman’s queue-on-lock-
bit). In this paper, we will concentrate on implementing
locks entirely in software using the atomic memory prim-
itives, that are available in the majority of modern proces-
sors. The software-only locking primitives we directly com-
pare are the following:

1. TATAS : traditional test-and-test&setlock

2. TATAS_EXP: TATAS with exponential backoff

3. MCS: queue-based locks of Mellor-Crummey and
Scott [18]

4. CLH : queue-based locks of Craig, Landin, and Hager-
sten [5, 16]

5. RH: our proof-of-concept NUCA-aware lock [20]

6. HBO: our new NUCA-aware spin lock with hierarchi-
cal backoff (see section 4.1)

7. HBO_GT: HBO with global traffic throttling (see sec-
tion 4.2)

8. HBO_GT_SD: HBO_GT with starvation detection
(see section 4.3)

We also present a short introduction to alternative synchro-
nization approaches; reactive synchronization and several
hardware locking schemes.



Atomic Primitives. In this paper we make reference
to three atomic operations: (1)tas (address) atomically
writes a nonzero value to theaddressmemory location and
returns its original contents; a nonzero value for the lock
represents the locked condition, while a zero value means
that the lock is free; (2)swap(address, value) atomically
writes avalue to theaddressmemory location and returns
its original contents; (3)cas (address, expected_value,
new_value) atomically checks the contents of a memory lo-
cationaddressto see if it matches anexpected_valueand,
if so, returns its original contents and replaces it with a
new_value.

Simple Locking Algorithms.Two very commonly used
busy-wait algorithms are TATAS and TATAS_EXP. The
contention produced by the traditionaltest&set-based spin
locks can be reduced by polling (busy-wait code) with ordi-
nary load operations to avoid generating expensive stores
to potentially shared locations (TATAS algorithm). Fur-
thermore, the burst of refill traffic whenever a lock is re-
leased can be reduced by using the Ethernet-style exponen-
tial backoff algorithm in which, after a failure to obtain the
lock, a requester waits for successively longer periods of
time before trying to issue another lock operation [1, 18].
The delay betweentas attempts should not be too long;
otherwise, processors might remain idle even when the lock
becomes free. This is the idea behind the TATAS_EXP lock,
and one typical implementation is shown below.

typedef volatile unsigned long tatas_lock;

01 void tatas_exp_acquire (tatas_lock *L)
02 { if (tas(L)) tatas_exp_acquire_slowpath(L); }

03 void tatas_exp_acquire_slowpath (tatas_lock *L)
04 {
05 int b = BACKOFF_BASE, i;
06 do {
07 for (i = b; i; i--) ; // delay
08 b = min(b * BACKOFF_FACTOR, CAP);
09 if (*L)
10 continue;
11 } while (tas(L));
12 }

13 void tatas_exp_release (tatas_lock *L)
14 { *L = 0; }

In many implementations,acquireandreleasefunctions are
in-lined, while theacquire_slowpathroutine is linked to the
binary code. Backoff parameters must be tuned by trial and
error for each individual architecture. The storage cost for
TATAS locks is low and does not increase with the number
of processors.

Software Queuing Locks.Even with exponential back-
off, TATAS locks still induce significant traffic. Software
queuing locks may eliminate this problem by letting each
process spin on a different local-memory location. Many of
the software queuing locks are inspired by the first proposal
for a distributed, hardware queue-based locking scheme
proposed for the cache controllers of the Wisconsin Mul-
ticube in the late 1980s [8].

The acquire function of the software-based queue locks
perform three basic phases: (1) aflag variable in a shared
address space is initialized to the valueBUSY; (2) the con-
tent at the lock location in memory is swapped with the ad-
dress value pointing to theflag ; (3) the thread spins until

theprev_flag memory location, a pointer which was re-
turned by the swap, contains the valueFREE. The release
function of the queue-based locks writes aFREEvalue to
the flag location. Numerous variations of software queu-
ing lock implementations are known [1, 5, 9, 16, 18, 22].

A unique feature of software queuing locks found in
many implementations is an explicit starvation avoidance
and maximal fairness; in other words, first come, first
served order of lock-acquire requests is guaranteed. In addi-
tion, software queue-based locks provide reasonable latency
in the absence of contention, provide good scalability for
high-contended locks on many architectures, and can easily
be completely in-lined into the application code.

The RH Lock. The RH lock is our proof-of-concept
NUCA-aware spin lock that supports two nodes [20]. The
goal for the RH lock was to create a lock that minimizes
the global traffic generated at lock handover and maximizes
the node locality of NUCAs. In the RH scheme, every node
contains a copy of a lock. Thus, the lock storage cost is
twice that of simple locking algorithms. Allocating and
physically placing memory in different nodes may be dif-
ficult or even impossible task for many machines. That is
why the RH lock code is not particularly portable.

Initially, the lock is logically placed in node 0 (the lock
value is marked asFREE, meaning that both threads from
the local or remote node are allowed to acquire the lock).
The other node (node 1) will observe aREMOTEvalue if
it acquires its local copy of the lock for the first time. The
first thread that observes theREMOTEtag is the “node win-
ner” and will continue to spin remotely with a larger backoff
until the global lock is obtained. The RH scheme can exclu-
sively hand over the lock to another thread in the same node
by marking the lock value with “local free” tagL_FREE.
This will not only cut down on the lock handover time, but
will also create more locality in the critical section work,
since its data structures are probably already in the node.
Theswap andcas primitives are used, and the implemen-
tation is vulnerable to starvation.

Alternative Approaches.The fact that some synchro-
nization algorithms perform well under low-contention pe-
riods and others under high-contention periods is the basic
idea behind thereactive synchronizationpresented by Lim
and Agarwal [14]. Reactive algorithms will dynamically
switch among several software lock implementations. Typ-
ically, spin locks (TATAS_EXP) are used during the low-
contention phase, and queue-based locks (MCS) are used
during the high-contention phase [11]. Reactive algorithms
demonstrate modest performance gains.

The first to propose a distributed, queue-based locking
scheme in hardware were Goodman, Vernon, and Woest [8].
They introduced the queue-on-lock-bit primitive (QOLB,
originally called QOSB). In this scheme, a distributed,
linked list of nodes waiting on a lock is maintained entirely
in hardware (pointers in the processor caches are used to
maintain the list of the waiting processors), and the releaser
grants the lock to the first waiting node without affecting
others. Effectivecollocation (allocation of the protected
data in the same cache line as the lock) is possible; thus,
this hardware scheme may reduce the lock hand-over time



as well as the interference of lock traffic with data access
and coherence traffic. The original QOLB proposal demon-
strates good performance [11], but it requires complex pro-
tocol support, new instructions, and recompilation of appli-
cations. Another purely hardware-based mechanism called
Implicit QOLB uses speculation and delays to transparently
convert software locks to provide a hardware queued-lock
behavior without requiring any software support or new in-
structions [21]. The load-linked/store-conditional instruc-
tions are used to demonstrate a possible implementation.

Stanford DASH uses directories to indicate which pro-
cessors are spinning on the lock [13]. When the lock is
released, one of the waiting nodes is chosen at random and
is granted the lock. The grant request invalidates only that
node’s caches and allows one processor in that node to ac-
quire the lock with a local operation. This scheme lowers
both the traffic and the latency involved in releasing a pro-
cessor waiting on a lock. A time-out mechanism on the lock
grant allows the grant to be sent to another node if the spin-
ning process has been swapped out or migrated.

4. Hierarchical Backoff Locks

In this section we describe a set of a new NUCA-aware
spin locks with hierarchical backoffs (HBO and HBO_GT)
that exploit communication locality and reduce global traf-
fic for contended locks while adding less overhead for un-
contested locks than any of the software queue-based lock
implementations. We also suggest one solution that lowers
the risk of starvation (HBO_GT_SD). The storage cost for
all proposed locks is low (a single variable allocated in just
any of the NUCA nodes suffices) and does not increase with
the number of processors. HBO_GT and HBO_GT_SD
also use one extra variable per NUCA node.

What do we need to make this possible? All three pro-
posals only use one common atomic operation:cas . In ad-
dition, per-thread/processnode_id information is needed.

4.1. The HBO Lock

The goal of the HBO lock is similar to that of the RH
lock, which is that the algorithm should exploit communi-
cation locality and reduce global traffic for contended locks.
In addition, in this algorithm, we pay attention to adding as
little overhead as possible for uncontested locks. Ideally, at
low contention or in the absence of contention the algorithm
should not add any overhead, it should simply perform an
atomic operation directly on the lock variable.

The idea behind the HBO lock is really simple: when
a lock is acquired, thenode_id of the thread/process is
cas -ed into the lock location. In other words, if the lock-
value is in theFREEstate, it is atomically changed into
the node_id , otherwise it remains the same. If a busy
lock is held by someone in the same node, thecas will re-
turn the thread’s ownnode_id , and the thread will start
spinning with a small backoff constant (the same, for exam-
ple, as the typical TATAS_EXP configuration). If thecas
returns a differentnode_id , the thread will use a larger

backoff constant. In this manner, a thread that is executing
in the same node in which a lock has already been obtained
will be more likely to subsequently acquire the lock when
it is freed in relation to other contending threads executing
in other nodes. Decreased migration of the lock (and the
shared critical-section data structures) from node to node
is obtained, and the overall performance is enhanced. This
scheme can be expanded in a hierarchical way, using more
than two sets of constants, for a hierarchical NUCA. Fig-
ure 1 shows code for the HBO lock. Emphasized lines are
related to the HBO_GT lock and should be ignored for the
HBO proposal.

Note that the “critical path” of the HBO lock (lines 6–
9) does not add any significant overhead compared with the
simple spin locks (assuming that thenode_id information
is easily accessible, e.g., it is stored in a thread-private reg-
ister). That is important for the performance of the lock in
the absence of contention.

As in the TATAS_EXP implementation (see section 3),
theacquireandreleasefunctions of HBO locks can be in-
lined, while theacquire_slowpathroutines are linked to the
binary code. Backoff parameters must also be tuned by trial
and error for each individual architecture.

4.2. The HBO_GT Lock

When multiple processors in the same node are execut-
ing in the slow spin loop (HBO lock, lines 37–52, Figure 1),
the global coherence traffic through network is created by
cas operations of each of the spinning processors. The
purpose of the HBO_GT (global traffic throttling) lock is to
limit the number of processors that are spinning in the same
node and attempting to gain a lock currently owned by an-
other node, thereby reduce global traffic on the network.

Before acquiring a lock, the thread reads the per-node
memory location (not necessarily allocated in the local
memory) is_spinning , compares its content with the
lock address, and keeps spinning for as long they are equal
(line 5 and 56, Figure 1). Then, the thread performs the
atomiccas operation (line 6 and 57). If thecas returns
a node_id different from the thread’s own id, the thread
will store the lock addressL in the node’sis_spinning
and start to spin for the lock with a fairly large backoff con-
stant. This operation may thus prevent others in the same
node from performing lock-acquisition transactions to the
lock address (thecas operations) that might otherwise cre-
ate global coherence traffic on the network. As soon as the
thread has acquired the lock, it writes the “dummy value”
to the node’sis_spinning , which allows any waiting
neighbor to start spinning. By using this algorithm, there
is usually only one thread per node (or a small number of
threads) that is performing remote spinning.

4.3. The HBO_GT_SD Lock

Many of the queue-based locks guarantee starvation free-
dom. Even though starvation is usually unlikely [6], with
multiple threads competing for a lock, it is possible that



typedef volatile unsigned long hbo_lock;

01 void hbo_acquire (hbo_lock *L)
02 {
03 unsigned long tmp;
04
05 while (L == is_spinning[my_node_id]) ; // spin
06 tmp = cas(L, FREE, my_node_id);
07 if (tmp == FREE)
08 return; // lock was free, and is now locked
09 hbo_acquire_slowpath(L, tmp);
10 }

11 void backoff (int *b, int cap)
12 {
13 int i;
14 for (i = *b; i; i--) ; // delay
15 *b = min(*b * BACKOFF_FACTOR, cap);
16 }

17 void hbo_acquire_slowpath (hbo_lock *L,
18 unsigned long tmp)
19 {
20 int b;
21
22 start:
23
24 if (tmp == my_node_id) { // local lock
25 b = BACKOFF_BASE;
26 while (1) {
27 backoff(&b, BACKOFF_CAP);
28 tmp = cas(L, FREE, my_node_id);
29 if (tmp == FREE)
30 return;
31 if (tmp != my_node_id) {
32 backoff(&b, BACKOFF_CAP);
33 goto restart ;
34 }
35 }
36 }
37 else { // remote lock
38 b = REMOTE_BACKOFF_BASE;
39 is_spinning[my_node_id] = L;
40 while (1) {
41 backoff(&b, REMOTE_BACKOFF_CAP);
42 tmp = cas(L, FREE, my_node_id);
43 if (tmp == FREE) {
44 is_spinning[my_node_id] = DUMMY;
45 return;
46 }
47 if (tmp == my_node_id) {
48 is_spinning[my_node_id] = DUMMY;
49 goto restart ;
50 }
51 }
52 }
53
54 restart :
55
56 while (L == is_spinning[my_node_id]) ; // spin
57 tmp = cas(L, FREE, my_node_id);
58 if (tmp == FREE)
59 return;
60 goto start;
61 }

62 void hbo_release (hbo_lock *L)
63 {
64 *L = FREE;
65 }

Figure 1. Acquire and release code for HBO and
HBO_GT locks. Emphasized lines are related to
the HBO_GT implementation; they should be ig-
nored for the HBO lock.

some threads may be granted the lock repeatedly while oth-
ers may not and may become starved. Since both HBO and
HBO_GT (and all other simple spin-locking algorithms) are
vulnerable to starvation, we need a solution that at least low-
ers the risk of potential starvation, which is especially im-
portant for HBO locks because of their “nonuniform” na-
ture in the locking algorithm. For example, a count can
be maintained of the number of times a lock-request has
been denied and, after a certain threshold, a thread’s prior-
ity may be increased (a thread can start spinning without
any backoff until the lock is obtained). In addition to this
simple “thread-centric” solution, HBO_GT_SD provides a
“node-centric” mechanism, described in further detail be-
low, which lowers the risk of node starvation. Explicit
thread-centric starvation avoidance can be implemented
with alternative approaches (reactive synchronization [14],
see section 3), at the expense of additional complexity in
the lock algorithm.

The HBO_GT_SD lock is based on the HBO_GT pro-
posal. The idea behind the node-centric algorithm, which
lowers the risk of node starvation, is the following: after a
“winning” thread (or a small number of threads), has tried
several times to acquire a remote lock owned by another
node, it gets “angry.” An angry node will take two mea-
sures to get the lock more quickly: (1) it will spin more fre-
quently, and (2) it will set theis_spinning for the other
nodes to the lock address and thus prevent more threads in
those nodes from trying to acquire the lock.

43 if (tmp == FREE) {
44 // release the threads from our node
45 is_spinning[my_node_id] = DUMMY;
46 // release the threads from stopped nodes, if any
47 if (stopped_nodes > 0)
48 is_spinning[for each stopped_node] = DUMMY;
49 return;
50 }
51 if (tmp == my_node_id) {
52 is_spinning[my_node_id] = DUMMY;
53 if (stopped_nodes > 0)
54 is_spinning[for each stopped_node] = DUMMY;
55 goto restart ;
56 }
57 if (tmp != my_node_id) {
58 // lock is still in some remote node
59 get_angry++;
60 if (get_angry == GET_ANGRY_LIMIT) {
61 stopped_node_id[stopped_nodes++] = tmp;
62 is_spinning[tmp] = L;
63 }
64 }

Figure 2. Part of the HBO_GT_SD lock’s acquire
function. Lines 43–50 from the HBO_GT algo-
rithm are replaced with the code in this figure.

The details of this algorithm are shown in Figure 2 (lines
43–50 from Figure 1 are replaced with the code from Fig-
ure 2). Note that the initialization of variablesget_angry
andstopped_nodes is excluded from the code example.



5. Performance Evaluation

Most of the experiments in this paper are performed on
a Sun Enterprise E6000 SMP [25]. The server has 16 Ul-
traSPARC II (250 MHz) processors and 4 Gbyte uniformly
shared memory with an access time of 330 ns (lmbenchla-
tency [17]) and a total bandwidth of 2.7 Gbyte/s. Each pro-
cessor has a 16 kbyte on-chip instruction cache, a 16 kbyte
on-chip data cache, and a 4 Mbyte second-level off-chip
data cache.

The hardware DSM numbers have been measured on
a 2-node Sun WildFire built from two E6000 nodes con-
nected through a hardware-coherent interface with a raw
bandwidth of 800 Mbyte/s in each direction [10, 19].1 The
Sun WildFire access time to local memory is the same as
above, 330 ns, while accessing data located in the other
E6000 node takes about 1700 ns (lmbench latency). Ac-
cesses to data allocated in a CMR cache have a NUCA ratio
of about six, while accesses to other data only have a minor
latency difference between node-local and remote cache-to-
cache transfers. The E6000 and the WildFire DSM system
both run a slightly modified version of the Solaris 2.6 oper-
ating system.

We have implemented the traditional TATAS lock and
the RH lock using thetas , swap, and cas operations
available in the Sparc V9 instruction set. All HBO locks
are implemented with only acas operation. The code
for TATAS_EXP, CLH, and MCS lock is written by Scott
and Scherer [23], and the entire experimentation frame-
work is compiled with GNU’s gcc-3.2, optimization level
-O3. The TATAS_EXP lock was previously tuned for a
Sun Enterprise E6000 machine by Scott and Scherer [23].
We use identical values in our experiments. By using the
gcc’sstatic __inline__ construct, we explicitly in-
line TATAS, CLH, and MCS locks. All other locks have
a “slowpath” routine called from the corresponding in-line
part of the acquire function. Release functions for all locks
are in-lined. Machines used for tests were otherwise un-
loaded.

5.1. Uncontested Performance

One important design goal for locks is alow latencyac-
quisition of a free lock [6]. In other words, if a lock is free
and no other processors are trying to acquire it at the same
time, the processor should be able to acquire it as quickly as
possible. This is especially important for applications with
little or no contention for the locks, which fortunately is a
quite common case.

In this section we obtain an estimate of lock overhead in
the absence of contention for three common scenarios. We
evaluate the cost of the acquire-release operation (1) if the
same processoras the previous owner is the owner of the
lock (lock is in its cache); (2) if the lock is in thesame node
but the previous owner is not the current processor (lock
is in the neighbor’s cache); and (3) if the lock was owned

1Currently, our system has 30 processors, 16 plus 14, and therefore we
perform our experiments mainly on a 14 plus 14 configuration.

Previous Owner

Lock Type Same Same Remote

Processor Node Node

TATAS 150 ns 660 ns 2050 ns

TATAS_EXP 143 ns 613 ns 2070 ns

MCS 210 ns 732 ns 2120 ns

CLH 234 ns 806 ns 2630 ns

RH 198 ns 672 ns 4480 ns

HBO 152 ns 652 ns 2010 ns

HBO_GT 152 ns 643 ns 2010 ns

HBO_GT_SD 149 ns 638 ns 2010 ns

Table 1. Uncontested performance for a single
acquire-release operation.

by a remote node(lock is in the cache of a processor that
is in another node). More details about this NUCA-aware
microbenchmark are given in [20]. Results are presented in
Table 1. We observe that our low latency design goal for the
HBO locks is fulfilled, and performance is almost identical
with the simplest locks: TATAS and TATAS_EXP.

5.2. Traditional Microbenchmark

The traditional microbenchmark we use in this paper is a
slightly modified code used by Scott and Scherer in [23] on
the same architecture—Sun WildFire prototype SMP clus-
ter. The code consists of a tight loop containing a sin-
gle acquire-release lock operation, plus some critical sec-
tion work for gathering statistics. In addition, we initialize
last_owner , a global variable inside the critical section,
and force the thread to observe a new owner before it is al-
lowed to contend for a lock again. The last remaining thread
is excluded from this requirement in order to run to comple-
tion (see [20] for more details).

The microbenchmark iteration time for parallel execu-
tion on a 2-node Sun WildFire is shown in Figure 3 (left
diagram). In this study, we use round-robin scheduling for
thread binding to different cabinets. Figure 3 (right dia-
gram) shows also the ratio of node handoffs for each lock
type, reflecting how likely it is for a lock to migrate between
nodes each time it is acquired. As expected, NUCA-aware
locks consistently demonstrate low node-handoff numbers.
The simple spin locks (especially TATAS) also show fairly
low node handoffs, which can be expected since local pro-
cessors acquire a released lock much faster than remote pro-
cessors do. The queue-based locks are expected to show
node handoffs equal to(N/2)/(N − 1), sinceN/2 of the
processors reside in the other node, and we do not allow the
same processor to acquire the lock twice in a row. How-
ever, the queue-based locks exhibit unnatural behavior in
the node-handoff ratio. The simplistic microbenchmark we
use is used in most other lock studies. It makes proces-
sors in the same node more likely to “queue up” after each
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Figure 3. Slightly modified traditional microbenchmark on a 2-node Sun WildFire system.

other, and node handoffs are substantially lower than ex-
pected. This is especially true for CLH, which takes unfair
advantage of the test setup. Our only explanation for this is
pure luck. At 20 processors, the CLH shows a ratio of about
24/100. This also explains the varied performance in Fig-
ure 3, such as the good CLH performance at 20 and 24 pro-
cessors. At 8–10 processors, the node-handoff numbers are
fairly normal for both queue-based locks. Here we can see
that a critical section guarded by NUCA-aware locks (es-
pecially by RH, HBO_GT, and HBO_GT_SD) takes about
half the time to execute compared with the same critical
section guarded by any other software-based lock.

5.3. New Microbenchmark

No real applications have a fixed number of processors
pounding on a lock. Instead, they have a fixed number of
processors spending most of their time on noncritical work,
including accesses to uncontested locks. They rarely enter
the “hot” critical section. The degree of contention is af-
fected by the ratio of noncritical work to critical work. The
unnatural node-handover behavior of the traditional lock
benchmark led us to a new lock benchmark, which we feel
better reflects the expected behavior of a real application. In
the new microbenchmark, the number of processors is kept
constant. Each performs some amount of noncritical work,
which consist of one static delay and one random delay of
similar sizes, between attempts to acquire the lock. Initially,
the length of the noncritical work is chosen such that there
is little contention for the critical section and all lock algo-
rithms perform the same. More contention is modeled by
increasing the number of elements of a shared vector that
are modified before the lock is released. The pseudocode of
the new benchmark is shown in Figure 4.

Figure 5 (left diagram) shows that the two queue-based
locks perform almost identically for the new benchmark.
Figure 5 (right diagram) shows also their node handover to
be close to the expected values. The simple spin locks still
perform unpredictably. This is tied to their unpredictable

shared int cs_work[MAX_CRITICAL_WORK];
shared int iterations;

01 for (i = 0; i < iterations; i++) {
02 ACQUIRE(L);
03 {
04 int j;
05 for (j = 0; j < critical_work; j++)
06 cs_work[j]++;
07 }
08 RELEASE(L);
09 {
10 int non_cs_work[MAX_PRIVATE_WORK];
11 int j, random_delay;
12 for (j = 0; j < private_work; j++)
13 non_cs_work[j]++;
14 random_delay = random() % private_work;
15 for (j = 0; j < random_delay; j++)
16 non_cs_work[j]++;
17 }
18 }

Figure 4. New microbenchmark.

node handover. (TATAS values are measured for acrit-
ical_work of 0–1300 because its performance is poor for
higher levels of contention.) The NUCA-aware locks per-
form better the more contention there is, which can be ex-
plained by its decreasing amount of node hand-over. This is
exactly the behavior we want in a lock: the more contention
there is, the better it should perform.

In Table 2 we present the numbers for the traffic that is
generated by our new microbenchmark. The numbers are
normalized to the TATAS_EXP which generates 15.1 mil-
lion local and 8.9 million global transactions. Once again,
software queuing locks performs almost identically. We can
also observe that NUCA-aware locks generate less than half
the amount of global transactions than any of the software-
based locks on this NUCA machine. The global traffic is re-
duced by a factor of 15 compared to the traditional TATAS
locks.
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Figure 5. New microbenchmark on a 2-node Sun WildFire system, 28-processor runs.

Local Global

Lock Type Transactions Transactions

TATAS 4.41 4.70

TATAS_EXP 1.00 1.00

MCS 0.53 0.65

CLH 0.54 0.63

RH 0.54 0.28

HBO 0.60 0.30

HBO_GT 0.60 0.30

HBO_GT_SD 0.61 0.29

Table 2. Normalized local and global traf-
fic generated for the new microbenchmark
(critical_work = 1500, 28 processors).

5.4. Application Performance

In this section we evaluate the effectiveness of our
new locking mechanisms using explicitly parallel programs
from the SPLASH-2 suite [26]. Table 3 shows SPLASH-2
applications with the corresponding problem sizes and lock
statistics (Total Locksis the number of allocated locks, and
Lock Callsis the total number of acquire-release lock oper-
ations during the execution). Problem size is a very impor-
tant issue in this context. Generally, the larger the problem
size, the lower the frequency of synchronization relative to
computation. On the one hand, using large problem sizes
will make synchronization operations seem less important.
On the other hand, small problem sizes might lead to very
low speedup of the application, rendering it uninteresting
on a machine of this scale, even though we chose the fairly
standard problem sizes found in many other related inves-
tigations. We also chose to further examine only applica-
tions with more than 10,000 lock calls, as in the cases of

Total Lock

Program Problem Size Locks Calls

I Barnes 29k particles 130 69,193

I Cholesky tk29.O 67 74,284

FFT 1M points 1 32

I FMM 32k particles 2,052 80,528

LU-c 1024×1024 matrices, 1 32

16×16 blocks

LU-nc 1024×1024 matrices, 1 32

16×16 blocks

Ocean-c 514×514 6 6,304

Ocean-nc 258×258 6 6,656

I Radiosity room, -ae 5000.0 3,975 295,627

-en 0.050 -bf 0.10

Radix 4M integers, radix 1024 1 32

I Raytrace car 35 366,450

I Volrend head 67 38,456

IWater-Nsq 2197 molecules 2,206 112,415

Water-Sp 2197 molecules 222 510

Table 3. The SPLASH-2 programs. Only em-
phasized programs (marked with I) are stud-
ied further. Lock statistics are obtained for 32-
processor runs.



Barnes, Cholesky, FMM, Radiosity, Raytrace, Volrend, and
Water-Nsq. For each application, we vary the synchroniza-
tion algorithm used and measure the execution time on a 2-
node Sun WildFire machine. Programs are compiled with
GNU’s gcc-3.0.4, optimization level -O1.2 Table 5 presents
the execution times in seconds for 28-processor runs for all
eight studied locking schemes.3 Variance is given in paren-
theses in the same table. Normalized speedup for TATAS,
TATAS_EXP, MCS, CLH, and HBO_GT_SD is shown in
Figure 6. For Barnes, the MCS lock is much worse than
the ordinary TATAS_EXP, and for Volrend and Water-Nsq
that is also the case for the CLH lock. As expected from
our new microbenchmark study, on average, queue-based
locks perform about the same as the TATAS with exponen-
tial backoff.
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Figure 6. Normalized speedup for 28-processor
runs on a 2-node Sun WildFire.

We chose to further investigate only Raytrace. This ap-
plication renders a three-dimensional scene using ray trac-
ing and is one of the most unpredictable SPLASH-2 pro-
grams [6]. Detailed analysis of Raytrace is beyond the
scope of this paper (see [6, 24, 26] for more details). In
this application, locks are used to protect task queues; locks
are also used for some global variables that track statistics
for the program. A large amount of work is usually done
between synchronization points. Execution time in seconds
for all eight synchronization algorithms for single-, 28-, and
30-processor runs is shown in Table 4.

NUCA-aware locks demonstrate very low measurement
variance for both 28- and 30-processor runs. In the same ta-
ble, we also demonstrate that MCS and CLH locks are prac-
tically unusable for 30-processor runs. They are extremely
sensitive for small disturbances produced by the operating
system itself. Traditionally, original software queuing locks

2This is the highest level of optimization that does not break the cor-
rectness of execution for all applications and lock implementations.

3An unmodified version of Radiosity will not execute correctly with
software queuing locks on any optimization level. We did not investigated
this any further.

Lock Type 1 CPU 28 CPUs 30 CPUs

TATAS 5.02 2.90 (0.91) 2.70 (0.45)

TATAS_EXP 5.26 1.71 (0.18) 2.05 (0.26)

MCS 5.05 1.41 (0.28) > 200 s

CLH 5.30 1.38 (0.32) > 200 s

RH 5.08 0.62 (0.01) 0.68 (0.00)

HBO 5.00 0.77 (0.01) 0.78 (0.01)

HBO_GT 5.02 0.70 (0.01) 0.75 (0.00)

HBO_GT_SD 5.02 0.72 (0.01) 0.80 (0.02)

Table 4. Raytrace performance. Execution time
is given in seconds and the variance is presented
in parentheses.

exhibit poor behavior in the presence of multiprogramming,
because a process near the end of the queue, in addition to
having to wait for any process that is preempted during its
critical section, must also wait for any preempted process
ahead of it in the queue. This unwanted behavior of the
queue-based locks has been studied further by Scott on the
same architecture and on the Sun Enterprise 10000 multi-
processor [22, 23].

Speedup for Raytrace is shown in Figure 7. There is a
significant decrease in performance for all other locks above
12 processors, while the NUCA-aware locks continue to
moderately scale all the way up to 28 processors.
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Figure 7. Speedup for Raytrace.

We also present the normalized traffic numbers for all
synchronization algorithms in Table 6.



Program TATAS TATAS_EXP MCS CLH RH HBO HBO_GT HBO_GT_SD

Barnes 1.54 (0.05) 1.43 (0.01) 1.83 (0.15) 1.54 (0.10) 1.54 (0.14) 1.50 (0.04) 1.69 (0.06) 1.44 (0.10)

Cholesky 2.31 (0.07) 2.04 (0.04) 2.09 (0.03) 2.25 (0.11) 2.23 (0.06) 2.06 (0.09) 2.34 (0.03) 2.13 (0.11)

FMM 4.84 (0.33) 4.19 (0.19) 4.33 (0.06) 4.46 (0.07) 4.27 (0.13) 4.37 (0.09) 4.59 (0.27) 4.27 (0.09)

Radiosity 1.66 (0.06) 1.75 (0.07) N/A N/A 1.44 (0.07) 1.45 (0.09) 1.68 (0.04) 1.51 (0.03)

Raytrace 2.90 (0.91) 1.71 (0.18) 1.41 (0.28) 1.38 (0.32) 0.62 (0.01) 0.77 (0.01) 0.70 (0.01) 0.72 (0.01)

Volrend 1.70 (0.03) 1.57 (0.10) 1.48 (0.28) 1.75 (0.16) 1.61 (0.09) 1.68 (0.14) 1.33 (0.10) 1.24 (0.03)

Water-Nsq 2.37 (0.03) 2.25 (0.06) 2.20 (0.04) 2.45 (0.03) 2.21 (0.01) 2.14 (0.03) 2.09 (0.02) 2.14 (0.01)

Average 2.47 (0.21) 2.13 (0.09) 2.22 (0.14) 2.31 (0.13) 1.99 (0.07) 2.00 (0.07) 2.06 (0.08) 1.92 (0.05)

Table 5. Application performance for eight locking algorithms for 28-processor runs, 14 threads per WildFire
node. Execution time is given in seconds and the variance is shown in parentheses.

6. Fairness and Sensitivity

The task of the lock-unlock synchronization primitives
is to create a serialization schedule for each critical region
such that simultaneous attempt to enter the region will be
ordered in some serial way. Any serial order will result in a
correct execution, as long as starvation is avoided. Fairness
is often considered a desirable property, since it can cre-
ate an even distribution of work between threads. Without
fairness, the threads may arrive unevenly at a barrier, even
though they have performed the same amount of work. This
will force the early arriving threads to wait for the last arriv-
ing thread while performing no useful work. However, the
importance of fairness must be traded off with its impact on
performance [6].

It is not clear that fairness always results in the fastest
execution. Assume that all threads are expected to enter the
same critical region exactly once between two barriers. All
threads arrive roughly at the same time to the critical sec-
tion. Here, the serialization scheme with the shortest time
between two contenders entering the critical section would
be preferable over the fairness scheme that strictly sched-
uled the threads according to their arrival time.

The queue-based locks implement a first come, first
served order between simultaneous attempts to enter a criti-
cal region and guarantee both fairness and starvation avoid-
ance. The TATAS locks rely on the coherence implementa-
tion for its serialization, and can not make such guarantees.
They are dependent on such guarantees made by the un-
derlying coherence mechanism. HBO algorithms are based
on the TATAS proposals. In addition, they maximize node
affinity of the NUCAs, and improve the lock handover time
by handing over the lock to a waiting neighbor from the
same NUCA node, rather than the thread which has waited
the longest time in the system.

A very simple fairness study is performed on a new mi-
crobenchmark by measuring the finish times of all individ-
ual threads in the benchmark. The results for all lock al-
gorithms are shown in Figure 8. As expected, we can see
that the queue-based locks are the fairest locks in this ex-
periment; the percentage difference in completion time be-
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Figure 8. Fairness study.

tween the first and the last processor is only 2.1 percent.
TATAS_EXP seems to be most “unfair” lock for this bench-
mark with the same percentage difference of 28.9 percent.
NUCA-aware locks perform about the same, for example,
the percentage difference for HBO_GT_SD is 5.6 percent,
which is quite close to the difference of software queuing
lock implementations.

The sensitivity of the HBO_GT_SD algorithm is stud-
ied by running the new microbenchmark algorithm on a 2-
node Sun WildFire machine. Results for 26-processor runs
are shown in Figure 9 and 10. In Figure 9 we perform the
study by varying theREMOTE_BACKOFF_CAPparameter
(see Figure 1), and in Figure 10, theGET_ANGRY_LIMIT
parameter is varied (see Figure 2). The MCS and the
HBO_GT algorithms are used for comparison.

7. Conclusions

Efficient and scalable general-purpose synchronization
primitives should perform well both at high and low con-
tention. Most existing synchronization proposals, such
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as queue-based locks and locks based on various backoff
strategies, reduce the traffic generated at high contention
while adding a reasonable overhead at low contention.

The node affinity is identified as yet another important
property for scalable general-purpose locks. NUCAs, for
example CC-NUMAs built from a few large nodes or from
CMPs, have a lower penalty for reading data from a neigh-
bor’s cache than from a remote cache. Lock implementa-
tions that encourage handing over locks to neighbors will
improve the lock handover time, as well as the access to the
critical data guarded by the lock, but will also be vulnerable
to starvation.

In this paper we propose a set of new HBO locks that
exploit communication locality and reduce global traffic for
contended locks while adding less overhead for uncontested
locks than any of the software queue-based lock implemen-
tations. We also suggest one simple solution for detecting
starvation and lowering the risk of starvation.

A critical section guarded by the HBO locks is shown
to take about half the time to execute compared with the
same critical section guarded by any other software-based
lock. We also investigate the effectiveness and stability of
our new locks on a set of real SPLASH-2 applications. The
global traffic in the system is significantly reduced for sev-
eral microbenchmarks and applications.
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