Registration of Multimodal Microscopy

a3

Images USiﬂg CoMIR - UPPSALA
[ earned Structural Image Representations UNIVERSITET

Elisabeth Wetzer!, Nicolas Pielawski!, Johan Ofverstedt!, Jiahao Lu?,
Carolina Wahlby', Joakim Lindblad’, Natasa Sladoje’
'"Uppsala University, Sweden; University of Copenhagen, Denmark

Introduction

® Combining information of multiple modalities for one specimen can shed light on properties not
detectable by only one modality as they can provide complementary signals.

® Multimodal Registration can be extremely challenging it the appearance or signal expression den-
sity differs greatly between the modalities, as is the case for brightfield microscopy (BF) and sec-
ond harmonic generation (SHG).
[6]. In our perfor-
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® These image-like, dense representations can be succesfully registered by monomodal rigid regis-
tration methods, e.g. a-AMD (intensity-based, [3]) or using SIFT (feature-based, [4]).

® No data-specific information is incorporated in the learning, 1.e. the method is modality indepen-
dent and can be applied to other imaging modalities than BF and SHG.

® Very little aligned training data is required, for modalities which share sutficient structural similari-
ties, the required aligned training data can be as little as one image pair.

Contrastive Learning

Representational Space

® A randomly cropped patch in one mo- ® We require certain properties of the
dality serves as an anchor. Its corre- representations, such as rotational equi-
sponding patch in the other modality variance and similar intensities, which
acts as a positive. Any other patch of can be realized through the loss function
any modality serves as a negative. without any additional hyperparameters.

® Two CNNs, sharing no weights, only ® The appearance of CoMIRs depends
connected by the loss function, learn on the choice of similarity function; MSE
| dense representations by maximizing vieleded the best results.

negatives the distance between the anchor and ® The number of channels for the CoMIRs
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Fig. 4: ® CurveAlign: registers
The transforma- BF and SHG, using mo-
tion found for the dality specific information

CoMIRs is applied and mutual information
to the original mo-

dalities to achieve (MI) [6]. .
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tration. ® GAN-based Image Fig. 5: Image translation methods to transform BF and SHG
Translation methods: iInto one common modality. Arrows indicate resulting pairs for

pix2pix, CycleGAN, registration.
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their intensities (e.g. a-AMD [3]) or by feature-based methods (e.g. using I T Iggts;?ogzl
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® A transformation found for CoMIRs can be applied to orginal modalities feature based monomod- g;:c'g'rgi'n?'iss'
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® CoMIRs extract shared content in mutlimodal images and enable multi-
modal registration by reducing the problem to a monomodal one.

® CoMIRs combined with monomodal intensity- and feature-based registra-
tion methods significantly outperform multimodal registration by Ml as well
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® CoMIRs contain more valuable information than GAN generated images ;':f'.-,-:‘..'erc Centre for Image Analysis

obtained by image-to-image translation from one modality to the other.
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® Feature-based registration does not depend on the initial displacement of |
the images as is the case for Ml-based approaches. \/ I



