Fast Computation of Mutual Information with Application to Global Multimodal Image Alignment of Micrographs

Johan Öfverstedt, Joakim Lindblad, Nataša Sladoje

MIDA Group, Department of Information Technology, Uppsala University, Sweden

A rigid multimodal image alignment pipeline... A (Quantized) Compute CMIFs Compute CMIFs B (Quantized) B (Quantized) B (Quantized) A ligned A and T(B) gives T A ligned A and T(B)

Fig 1: A pipeline for global multimodal rigid alignment of micrographs. The pixel values are clustered with k-means (k=16), and cross mutual-information (CMIF) maps are produced, i.e. mutual information computed for all possible overlaps of image A and B (one CMIF map per considered rotation angle). Finally the optimal transformation is found by locating the global maximum of this stack of CMIF maps.

... based on a very fast algorithm. → Direct (k=64) 10000.0 ← Direct (k=32) 1000.0 Direct (k=16) 100.0 Direct (k=8) Proposed (k=64)10.0 Proposed (k=32)Proposed (k=16) Proposed (k=8)-×- Proposed (k=4) Proposed (k=2) 2048² 256^{2} 512² 1024^{2} 128² 4096^{2} Reference image size (px)

Fig 2: Our algorithm (implemented in PyTorch) for computing MI maps in the frequency domain is orders of magnitude faster than a baseline (direct) algorithm (both running on a GeForce GTX 2080 GPU) on images of practically relevant size, and with suitable choice of the number of discrete values (*k*). The algorithm works for both 2D and 3D data.

Validated on two pairs of microscopy modalities...

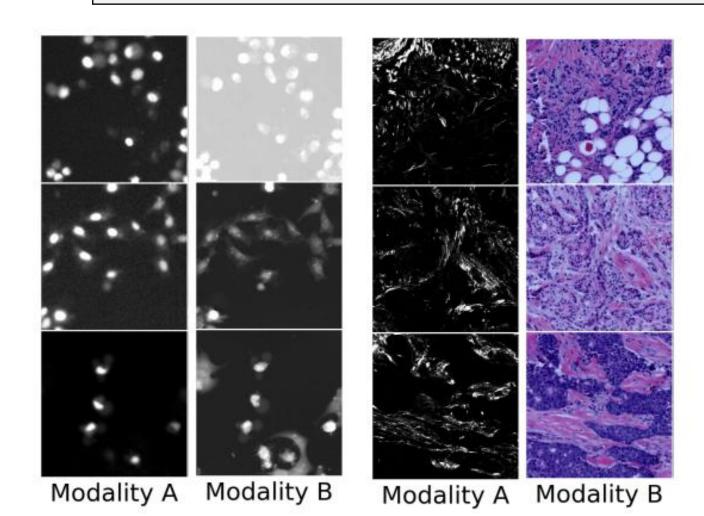


Fig 3: The method is evaluated on aligned image pairs* of fluorescence / quantitative phase imaging (cytological) and secondharmonic generation / bright-field (histological). The image from Modality B is synthetically (spatially)

rotated and displaced. The task is to recover the position of landmarks corresponding to the corners of the reference image (Modality A) by aligning the image pair.

*The cytological dataset consists of 5040 image pairs and the histological dataset consists of 536 image pairs.

... exhibiting excellent performance.

Dataset	Cytological Data		Histological Data	
Method	α-AMD	SIFT	α-AMD	SIFT
I2I	71.1 ± 5.8	24.4 ± 6.2	28.4	0
CoMIR	68.0 ± 14.0	72.5±7.1	81.3	59.3
Local MI	89.9±3.0		47.8	
Proposed	99.4±0.4		91.2	

Table 1: Quantitative evaluation of our image alignment pipeline on synthetically (spatially) transformed images, evaluated in terms of success-rate (success criterion: relative error* < 2%). Our method outperforms gradient-based MI maximization and several recent Deep Learning-based methods. [1, 2]

*The relative error is computed as the mean Euclidean displacement of recovered landmarks (the 4 corners of the reference image) divided by the side-length of the image.

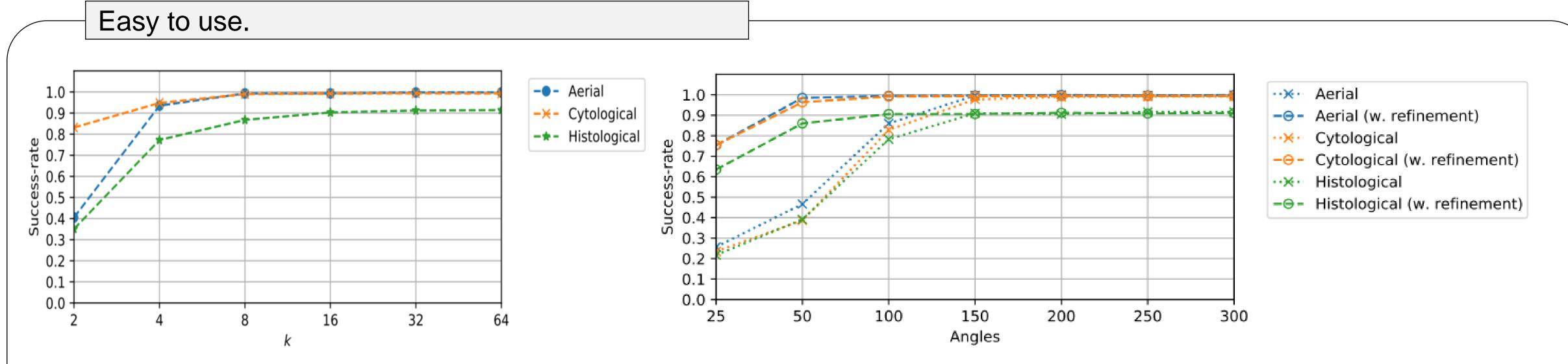


Fig 4: The method is robust (in terms of success-rate) to the choice of the parameter *k* and the number of rotation angles explored in the grid search (especially when including a refinement step of random search around the best solution found with grid search). No training (data) is required.

Open source.

github.com/MIDA-group/globalign/

Acknowledgements.

We thank Kevin Eliceiri and Jaromir Gumulec and their teams for kindly sharing their data that enabled the quantitative evaluation.