
Image-to-Image Translation in Multimodal Image Registration: 
How Well Does It Work?
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Overview Experiments

Results

Conclusion

• 4 GAN-based methods + 1 contrastive representation learning method 
• pix2pix[1] (supervised, strong baseline)
• CycleGAN[2] (unsupervised, widely applied in biomedical field)
• DRIT++[3] (unsupervised, explicitly extract shared information)
• StyleGAN-v2[4] (unsupervised, injects domain-specific style into a 

given input)
• CoMIR[5] (supervised, maps modalities to a “middle ground”)

• 2 representative monomodal registration methods: SIFT, α-AMD
• 2 baselines: MI maximisation, CurveAlign[6]

• 3 multimodal datasets of increasing difficulty: aerial (NIR, RGB), 
cytological (Fluorescence, QPI), histological[7] (SHG, BF)

• Popular I2I translation methods show high instability and data 
dependence, especially when modalities differ considerably

• I2I translation quality (measured by FID[8]) shows to be a 
reasonably reliable predictor of the success of subsequent 
monomodal registration

• The supervised representation-learning approach exhibits 
overall best performance

• An open-source quantitative evaluation framework for 
multimodal biomedical registration, including all method 
implementations, evaluation code, and all datasets
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Table: Overall success rate (success: relative registration error 𝛿𝛿 < 2%)
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Dataset Aerial Data Cytological Data Histological Data
Method α-AMD SIFT α-AMD SIFT α-AMD SIFT

cyc_A 4.9±2.1 66.4±18.8 71.1±5.8 24.4±6.2 0 0
cyc_B 65.0±8.4 83.2±3.1 19.2±2.8 17.6±2.5 13.8 0
drit_A 34.8±5.4 38.0±7.9 61.6±16.2 21.6±3.6 1.7 0
drit_B 18.1±3.1 35.4±3.5 21.0±9.0 4.6±1.3 4.7 0
p2p_A 80.2±3.9 98.3±0.5 57.9±7.4 8.6±1.2 28.4 0
p2p_B 61.5±4.7 85.0±5.0 0.1±0.1 3.8±2.0 0.4 0
star_A 64.0±7.5 6.5±2.7 57.4±13.0 10.9±2.2 2.6 0
star_B 41.1±3.6 5.9±0.5 17.8±4.9 5.8±0.6 19.6 0
comir 91.8±7.7 100.0±0.0 68.0±14.0 72.5±7.1 81.3 59.3
B2A 12.8±3.5 72.5±4.8 21.9±10.5 20.8±2.0 0 0

MI_B2A 69.1±3.7 89.9±3.0 47.8
CA_B2A 3.7
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