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•	 Dataset: 10 slides from 6 patients, 3 with cancer and 3 healthy, further 
 	data collection is ongoing

•	 10274 cell images, size 80x80

•	 Training/test set split are made on a patient level to avoid data leakage

•	 Labels on patient level, not for individual cells
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•	 Rotational equivariance did not improve performance

•	 All three models based on LBPs exhibit higher performances w.r.t. the F1- 
	 score over conventional CNN training based on solely intensity input

•	 Texture imposed to a CNN in different ways improves performance

Model Accuracy F1-Score

Juefei-Xu [3] 81.03% 84.85%
Li [4] 80.70% 84.30%
Levi [6] 72.91% 81.01%
Marcos [5] 68.37% 74.41%
ResNet 78.34% 75.51%
VGG 80.66% 77.68%
LBP + ANN 75.42% 71.44%

•	 512 fixed filters fk  with randomly  
	 positioned values ±1 and 10% zeros

•	 Rectified linear activation σ(fk)

•	 8 fixed directional difference filters

•	 Sum of sigmoid activations,  
	 followed by gating functions

•	 LBP are mapped into 3D metric space by multidimensional scaling

•	 Two ResNet architectures are trained in parallel, one on intensity images, 
	 one on LBP maps

•	 Late Fusion: Softmax output is concatenated and classified by SVM

•	 Stack of rotated filters, adapted for vector field input

•	 Output angle is given by the rotation of the filter with highest activation 

•	 Activation magnitude & direction form 2D vector field output

•	 Batch norm & spatial pooling for vector fields
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Fig. 6: Performance measured by F1-score (imbalanced dataset)

•	Aim: Early stage oral cancer detection by screening of brush samples  
	 acquired in dental clinics

•	Automated approaches based on image classification are required

•	 Comparative analysis of deep learning methods for texture-based  
	 classification:  

			   Can Local Binary Patterns improve performance of CNNs?

•	 Four recently published CNNs with LBP flavor are compared w.r.t. their  
	 performance on oral cancer cell classification: 
	 Juefei-Xu et al. [3] 					    Marcos et al. [5] 
	 Li et al. [4]								       Levi et al. [6], Wetzer et al. [7]

•	 Average responses are binned into 
	 histograms

•	 Dense layer and sigmoid activation

•	 Trainable weights vk used in linear 
	 sum to create feature map

•	 Feature map as input for next layer

Fig. 4: Model III
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Fig. 5: Model IV


