Visualization of convolutional neural network class
UPPSALA activations in automated oral cancer detection
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- Context N

® Cancer of the oral cavity is one of the most common malignancies in the world MOtlvathn
® No routine screening tests for early detection yet Why do CNNs show such an
® Collection of samples with a brush would be a practical choice in this case impressive performance in automated
k ® Cytological examination supported by automated image classification J Image classification tasks?
On the one hand, deep neural networks have a
f WO rkﬂOW \ fﬁemdp;f: ir:gltrl] cl)?lliire Ztrrijce;t;re that allows them to fit
Brush Staining according Acquisition of digital Train CNN model to On the other hand, it is still very hard to conclude
samples —> to standard PAP _> images of cells' nuclei —> categorise cells into what makes them arrive at a particular decision
collection procedures and surrounding tissue malignant vs healthy type Interpreting a neural network outcome is especially

important for medical tasks, such as early cancer
detection, where automated methods should assist

® Convolutional neural networks (CNNs) have previously shown the ability to detect cytologists in decision making

the difference between healthy and malignant samples [1] How can we improve understanding and gain trust

® Ground truth labels are defined only at the patients’ level, not at the cellular level in CNN-supported decision making?

® Not looking for clearly malignant cells, but using randomly selected cells in a sample J

&
4

Explainable Al

® Recently, a variety of methods have been introduced to improve understanding of neural networks in different ways
® \\Ne focus on methods that visualize what aspects of input data affect the network’s decision [2-8]

Visual analysis of decisions made by networks
The same architecture is applied to two different datasets: cats&dogs and cells

Dogs (P) and cats (N) Cells from malignant (P) and healthy (N) samples

Methods order in each image. Top left: original image, Top right: grad-CAM, Bottom left: guided grad-CAM, Bottom right: guided grad-CAM, positive saliency, sum along channels [3,5]

Conclusions

® \Ne have selected a set of most promising approaches for visualisation of CNN class activations
® \\e demonstrate applicability of these methods to cytological image data, however, a number of challenges remain:

- The evaluation of visualisation by human is subjective; an objective measure of a map quality is not straightforward to design
k - Explanations tightly depend on the data; any feature of an input image is used if it helps the network to reduce the loss during training J

- There is no guarantee that human perception of a class would coincide with the neural network perception
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