
Explainable AI

Visual analysis of decisions made by networks  
The same architecture is applied to two different datasets: cats&dogs and cells

Cells from malignant (P) and healthy (N) samplesDogs (P) and cats (N)

• Recently, a variety of methods have been introduced to improve understanding of neural networks in different ways 
• We focus on methods that visualize what aspects of input data affect the network’s decision [2-8]
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Conclusions 
• We have selected a set of most promising approaches for visualisation of CNN class activations 

• We demonstrate applicability of these methods to cytological image data, however, a number of challenges remain: 

- The evaluation of visualisation by human is subjective; an objective measure of a map quality is not straightforward to design 
- Explanations tightly depend on the data; any feature of an input image is used if it helps the network to reduce the loss during training 
- There is no guarantee that human perception of a class would coincide with the neural network perception
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• Cancer of the oral cavity is one of the most common malignancies in the world  

• No routine screening tests for early detection yet 

• Collection of samples with a brush would be a practical choice in this case 

• Cytological examination supported by automated image classification  

• Convolutional neural networks (CNNs) have previously shown the ability to detect 
the difference between healthy and malignant samples [1] 

• Ground truth labels are defined only at the patients’ level, not at the cellular level 

• Not looking for clearly malignant cells, but using randomly selected cells in a sample

Why do CNNs show such an 
impressive performance in automated 

image classif icat ion tasks?   

➡ On the one hand, deep neural networks have a 
complex multi-layer structure that allows them to fit 
the data in a nonlinear way 

➡ On the other hand, it is still very hard to conclude 
what makes them arrive at a particular decision 

➡ Interpreting a neural network outcome is especially 
important for medical tasks, such as early cancer 
detection, where automated methods should assist 
cytologists in decision making 

➡ How can we improve understanding and gain trust 
in CNN-supported decision making?

Methods order in each image. Top left: original image, Top right: grad-CAM, Bottom left: guided grad-CAM, Bottom right: guided grad-CAM, positive saliency, sum along channels [3,5]
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