

Terrain Navigation Using the Ambient Magnetic Field as a Map

Arno Solin

Aalto University

IndoorAtlas Ltd.

August 30, 2017

In collaboration with

M. Kok, N. Wahlström, T. B. Schön, J. Kannala, E. Rahtu, and S. Särkkä

Presentation Outline

(Classical) Terrain Navigation

Terrain Matching in the Magnetic Landscape

Outline of the Approach

Magnetic terrain map:

A Gaussian process model for the magnetic field estimate and its variance for any spatial location in the building.

► Particle filtering

A sequential Monte Carlo approach for proposing different state histories and finding which one matches the data the best.

► Pedestrian dead reckoning:

A model for the movement of the person being tracked.

Maps of the Magnetic Field

- A map of the magnetic field is required.
- The magnetic field is a vector field.
- A set of measurements of the magnetic field at known spatial points.
- Interpolation and extrapolation of the magnetic field done by a Gaussian process (GP) regression model [1].
- The model combines the noisy measurements with prior information from the physical properties of magnetic fields.
- The output is both the mean and marginal variance of the magnetic field at any spatial input.

Magnitude of the magnetic field.

Maps of the Magnetic Field

- A map of the magnetic field is required.
- The magnetic field is a vector field.
- A set of measurements of the magnetic field at known spatial points.
- Interpolation and extrapolation of the magnetic field done by a Gaussian process (GP) regression model [1].
- The model combines the noisy measurements with prior information from the physical properties of magnetic fields.
- The output is both the mean and marginal variance of the magnetic field at any spatial input.

Positioning by Particle Filtering

- Probabilistic statistical inference on where the user is based on his/her history of magnetometer observations.
- Concerned with state space models of form

$$\mathbf{x}_{k+1} \sim p(\mathbf{x}_{k+1} \mid \mathbf{x}_k),$$

 $\mathbf{y}_k \sim p(\mathbf{y}_k \mid \mathbf{x}_k).$

- State variables: user position and heading angle.
- Combining assumptions of user movement (PDR) and ...
- ...how the assumed positions match the magnetic field.

Positioning by Particle Filtering

Initialization: Draw *n* samples from the prior $\mathbf{x}_0^{(i)} \sim p(\mathbf{x}_0)$, i = 1, ..., n.

For each time step k = 1, 2, ...

1. **Prediction**: Draw samples $\mathbf{x}_k^{(i)}$ from the importance distributions

$$\mathbf{x}_{k}^{(i)} \sim \pi(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_{1:k}), \qquad i = 1, 2, \dots, n.$$

This propagates the particles according to the PDR model.

2. Map matching: Calculate new weights according to

$$w_k^{(i)} \propto w_{k-1}^{(i)} \frac{p(\mathbf{y}_k \mid \mathbf{x}_k^{(i)}) p(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)})}{\pi(\mathbf{x}_k^{(i)} \mid \mathbf{x}_{k-1}^{(i)}, \mathbf{y}_{1:k})}$$

and normalize them to sum to unity.

3. Resampling

Example Study

Case study:

CS Building at Aalto University.

► Mapping:

- Nexus 5 smartphone.
- 867 m of mapping paths in 15 min.
- Some 42 000 measurements.

► Test paths:

- · Collected two weeks later.
- Sampling rate in the test paths is 5 Hz.
- Each test case roughly 30 s long.
- 100 test paths altogether.

Setup:

- Particles n = 5000.
- Sensors calibrated off-line.

Example Study

The videos are available on YouTube: https://youtu.be/UuUo9Q00T1Q

Conclusion

- Good performance even using magnetic only:
 - Time-to-convergence: 12 s.
 - Distance-to-convergence: 13 m.
 - ► Error after convergence: 5 m (best case 1–2 m.).
- What to do to take this further:
 - Sensor calibration.
 - Pedestrian dead-reckoning.
 - Further sensor fusion (satellite and radio).
 - SLAM.

Bibliography

- [1] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B. Schön, and Simo Särkkä. *Modeling and interpolation of the ambient magnetic field by Gaussian processes*. Accepted for publication in IEEE Transactions on Robotics.
- [2] Arno Solin, Simo Särkkä, Juho Kannala, and Esa Rahtu (2016). *Terrain navigation in the magnetic landscape: Particle filtering for indoor positioning.* Proceedings of the European Navigation Conference.

- Come and see the poster!
- Homepage: http://arno.solin.fi
- Twitter: @arnosolin

