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(Classical) Terrain Navigation
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Terrain Matching in the Magnetic Landscape



Terrain Navigation Using the Ambient Magnetic Field as a Map
Arno Solin

5/14

Outline of the Approach

I Magnetic terrain map:
A Gaussian process model for the magnetic field estimate
and its variance for any spatial location in the building.

I Particle filtering:
A sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

I Pedestrian dead reckoning:
A model for the movement of the person being tracked.
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Maps of the Magnetic Field
I A map of the magnetic field is required.
I The magnetic field is a vector field.
I A set of measurements of the magnetic

field at known spatial points.
I Interpolation and extrapolation of the

magnetic field done by a Gaussian
process (GP) regression model [1].

I The model combines the noisy
measurements with prior information
from the physical properties of magnetic
fields.

I The output is both the mean and
marginal variance of the magnetic field
at any spatial input.

weight might be concentrated to a single particle, and the filter
estimate is thus only dependent on that one particle.

Sample depletion is avoided by resampling (step 3 in
Alg. 1). By resampling new (representative) particles are cre-
ated to replace those particles which have become negligible.
Resampling however increases uncertainty and therefore it
is avoided until needed, and therefore resampling is done
when the number of effective particles drops below a given
threshold.

The effective number of particles (see [12] for discussion)
gives a summary for sample depletion:

ne� � 1
�

i[w
(i)
k ]2

. (4)

The number of effective samples is between 1 � ne� � n,
where the upper bound indicates that all particles are equally
weighted and the lower bound that one particle has all the
weight. Thus the resampling threshold can be determined, for
instance, to be ne� < 2

3n.
If the terrain matching algorithm completely looses track

of the position, the effective number of particles tends to drop
drasticly at once. Therefore, on occasions when this happens,
we propose a reinitialization strategy which resets the particle
filter when the number of effective particles drop below 1

3n
on two consecutive steps.

B. Pedestrian dead reckoning

The knowledge of the movement of the target is encoded
into the dynamical model in the terrain matching algorithm
(step 1 in Alg. 1). In pedestrian positioning this model is
usually referred to as the ‘pedestrian dead reckoning’ (PDR)
component. In theory, this PDR information can originate
from various sources, such as device-provided odometry,
wheel encoders, pure inertial navigation, or step-detector based
movement indications.

In this study the interest is in matching the user-acquired
magnetic trajectory with the magnetic terrain. Therefore we
put less interest in the PDR model, and employ a simple
baseline model for the user movement. The model assumes
that the attitude and heading reference system (AHRS, see,
e.g., [10, 24]) estimating the orientation of the mobile device
is able to return decent (but noisy and drifting) estimates
of relative heading for each step. The AHRS operates on
gyroscope and accelerometer measurements only.

In our terrain navigation setup, the state variables are xk =
(pk, �k), where pk stands for the metric position at time tk,
and �k is the current heading estimate at that time instance.
The directed random walk model is as follow:

pk+1 = pk + uk, (5)

where uk = 1.5 �tk (cos �k, sin �k), with a probability of
0.95, and uk = 0, with a probability of 0.05. The stand-
still model allows the user to stop, and the default walking
speed parameter 1.5 m/s corresponds to normal walking at
approximately 5.4 km/h.
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Fig. 3: The norm of the mapped and interpolated magnetic
field. The opacity of the magnetic field estimate follows the
certainty (marginal standard deviation) of the Gaussian process
estimate.

The heading estimate �0 is initialized by matching the first
magnetometer observation to the magnetic map, and it is up-
dated from relative information provided by the AHRS system
on each step: �k = �k�1+��k+qk, where qk ⇠ N(0, �tk/2).
The random walk models for the position and heading together
define the dynamic (prediction) model

xk+1 ⇠ p(xk+1 | xk) (6)

which is a probabilistic model for the transition between the
previous state and the next state. This model is driven by the
AHRS estimates of the orientation. We also use this model as
the importance distribution in the particle filter.

C. Modeling the magnetic field by Gaussian processes
The modeling and interpolation of the magnetic field map

is based on the methodology presented by Solin et al. [5],
where additional knowledge from the physical properties of the
magnetic field is encoded into a Gaussian process regression
model.

The magnetic field is a vector field that obeys laws of
physics known as Maxwell’s equations. When the spatial lo-
cations x at which the magnetic field is observed or estimated
are far enough from any free currents (not inside building
structures), we may consider a latent scalar potential field �(x)
such that � : R3 � R, where x � R3 is the spatial coordinate.

Gaussian processes (see, e.g., [6]) are convenient and widely
used tools in spatial statistics and machine learning. Their
strength is the ease of encoding prior knowledge into the
model through a covariance function structure. We assume the
magnetic scalar potential field to be a realization of a Gaussian
process prior and the observations (magnetic field readings) to
be the gradients yi � R3 of this field corrupted by Gaussian
noise:

�(x) ⇠ GP(0, �lin.(x,x�) + �SE(x,x�)),

yi = ���(x)
��
x=xi

+ �i,
(7)

where �i ⇠ N(0, �2
noise I3), for each observation i =

1, 2, . . . , n.

Magnitude of the magnetic field.
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Maps of the Magnetic Field
I A map of the magnetic field is required.
I The magnetic field is a vector field.
I A set of measurements of the magnetic

field at known spatial points.
I Interpolation and extrapolation of the

magnetic field done by a Gaussian
process (GP) regression model [1].

I The model combines the noisy
measurements with prior information
from the physical properties of magnetic
fields.

I The output is both the mean and
marginal variance of the magnetic field
at any spatial input.

The local Earth’s magnetic field contributes linearly to the
scalar potential as

�lin.(x,x�) = �2
lin. x

Tx, (8)

where �2
lin. is a magnitude scale hyperparameter.

For the local variations in the magnetic field we use a
squared exponential covariance function which allows for
modeling anomalies induced by small-scale fluctuations and
building structures:

�SE(x,x�) = �2
SE exp

�
� �x � x��2

2 �2SE

�
, (9)

where the hyperparameters �2
SE and �SE represent the magni-

tude scale and the characteristic length-scale, respectively.
The model now has four hyperparameters: two magnitude

scale parameters (�2
lin. and �2

SE), a length-scale parameter (�SE),
and a noise scale parameter (�2

noise). These parameters can be
learned from the data by maximizing the marginal likelihood,
or fixed to sensible values describing typical variation.

The Gaussian process model can be used for modeling and
interpolation of the local magnetic field by first collecting
a batch of mapping data. This data consists of a set of
input–output pairs D = {(xi,yi)}n

i=1 at a discrete set of
spatial inputs xi and the (noisy) magnetic field observations
yi � R3 at those locations. In the following, we assume
that the magnetic field readings collected during mapping are
calibrated and corrected for rotation.

The Gaussian process regression model in Equation (7)
provides a means of estimating the predictive magnetic field
observation y� at an unseen test input x�. Thus returning the
following marginal predictions for the vector field components
x, y, and z (j = 1, 2, 3):

yj,� ⇠ N(yj,� | E[yj,� | x�, D], var[yj,� | x�, D]). (10)

This information can be utilized in the terrain matching
algorithm (step 2 in Alg. 1) during the update step, as it
directly gives the required probability formulation p(y | x)
required during the weight calculation:

p(y | x�) =
3�

j=1

N(yj,� | E[yj,� | x�, D], var[yj,� | x�, D]),

(11)
where y denotes the observed magnetic field, and y� the
predicted magnetic field from the GP regression model. Ori-
entation correction was accounted for by using an AHRS
algorithm for matching the z-component direction, and the
heading � in the state variable x. As the variance grows
outside mapped areas, the measurement model also implicitly
restricts the particle movement to traversable areas defined
during mapping.

In the particle filter, the initialization strategy was also based
on the magnetic field map. However, during initialization only
the z-component and the magnitude of the perpendicular xy-
component were used due to the lack of orientation informa-
tion.
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Fig. 4: The components of the mapped and interpolated mag-
netic field. The opacity of the magnetic field estimate follows
the certainty (marginal standard deviation) of the Gaussian
process estimate.

TABLE I: Results for the 100 test paths (68 converged) each
30 s in length.

Median Mean Standard deviation

Time-to-convergence 11.79 s 14.18 s 7.97 s
Distance-to-convergence 13.42 m 17.90 m 10.22 m
Error after convergence 4.87 m 9.28 m 10.86 m
Total error 18.49 m 19.42 m 11.47 m

III. RESULTS

We illustrate the feasibility of the terrain navigation setup
which combines a baseline PDR model, the a probabilistic map
of the magnetic field, and a particle filter based map matching
algorithm.

We consider an example of mapping of and self-localization
in an indoor environment. The test environment was chosen
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Positioning by Particle Filtering

I Probabilistic statistical inference on where the user is
based on his/her history of magnetometer observations.

I Concerned with state space models of form

x
k+1 ⇠ p(x

k+1 | x
k

),

y
k

⇠ p(y
k

| x
k

).

I State variables: user position and heading angle.
I Combining assumptions of user movement (PDR) and . . .
I . . . how the assumed positions match the magnetic field.
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Positioning by Particle Filtering

Initialization: Draw n samples from the prior x(i)
0 ⇠ p(x0), i = 1, . . . , n.

For each time step k = 1, 2, . . .

1. Prediction: Draw samples x(i)
k

from the importance distributions

x(i)
k

⇠ ⇡(x
k

| x(i)
k�1, y1:k ), i = 1, 2, . . . , n.

This propagates the particles according to the PDR model.

2. Map matching: Calculate new weights according to

w

(i)
k

/ w

(i)
k�1

p(y
k

| x(i)
k

) p(x(i)
k

| x(i)
k�1)

⇡(x(i)
k

| x(i)
k�1, y1:k )

and normalize them to sum to unity.

3. Resampling
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Example Study

I Case study:
• CS Building at Aalto University.

I Mapping:
• Nexus 5 smartphone.
• 867 m of mapping paths in 15 min.
• Some 42 000 measurements.

I Test paths:
• Collected two weeks later.
• Sampling rate in the test paths is 5 Hz.
• Each test case roughly 30 s long.
• 100 test paths altogether.

I Setup:
• Particles n = 5000.
• Sensors calibrated off-line.

The local Earth’s magnetic field contributes linearly to the
scalar potential as

�lin.(x,x�) = �2
lin. x

Tx, (8)

where �2
lin. is a magnitude scale hyperparameter.

For the local variations in the magnetic field we use a
squared exponential covariance function which allows for
modeling anomalies induced by small-scale fluctuations and
building structures:

�SE(x,x�) = �2
SE exp

�
� �x � x��2

2 �2SE

�
, (9)

where the hyperparameters �2
SE and �SE represent the magni-

tude scale and the characteristic length-scale, respectively.
The model now has four hyperparameters: two magnitude

scale parameters (�2
lin. and �2

SE), a length-scale parameter (�SE),
and a noise scale parameter (�2

noise). These parameters can be
learned from the data by maximizing the marginal likelihood,
or fixed to sensible values describing typical variation.

The Gaussian process model can be used for modeling and
interpolation of the local magnetic field by first collecting
a batch of mapping data. This data consists of a set of
input–output pairs D = {(xi,yi)}n

i=1 at a discrete set of
spatial inputs xi and the (noisy) magnetic field observations
yi � R3 at those locations. In the following, we assume
that the magnetic field readings collected during mapping are
calibrated and corrected for rotation.

The Gaussian process regression model in Equation (7)
provides a means of estimating the predictive magnetic field
observation y� at an unseen test input x�. Thus returning the
following marginal predictions for the vector field components
x, y, and z (j = 1, 2, 3):

yj,� ⇠ N(yj,� | E[yj,� | x�, D], var[yj,� | x�, D]). (10)

This information can be utilized in the terrain matching
algorithm (step 2 in Alg. 1) during the update step, as it
directly gives the required probability formulation p(y | x)
required during the weight calculation:

p(y | x�) =
3�

j=1

N(yj,� | E[yj,� | x�, D], var[yj,� | x�, D]),

(11)
where y denotes the observed magnetic field, and y� the
predicted magnetic field from the GP regression model. Ori-
entation correction was accounted for by using an AHRS
algorithm for matching the z-component direction, and the
heading � in the state variable x. As the variance grows
outside mapped areas, the measurement model also implicitly
restricts the particle movement to traversable areas defined
during mapping.

In the particle filter, the initialization strategy was also based
on the magnetic field map. However, during initialization only
the z-component and the magnitude of the perpendicular xy-
component were used due to the lack of orientation informa-
tion.
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Fig. 4: The components of the mapped and interpolated mag-
netic field. The opacity of the magnetic field estimate follows
the certainty (marginal standard deviation) of the Gaussian
process estimate.

TABLE I: Results for the 100 test paths (68 converged) each
30 s in length.

Median Mean Standard deviation

Time-to-convergence 11.79 s 14.18 s 7.97 s
Distance-to-convergence 13.42 m 17.90 m 10.22 m
Error after convergence 4.87 m 9.28 m 10.86 m
Total error 18.49 m 19.42 m 11.47 m

III. RESULTS

We illustrate the feasibility of the terrain navigation setup
which combines a baseline PDR model, the a probabilistic map
of the magnetic field, and a particle filter based map matching
algorithm.

We consider an example of mapping of and self-localization
in an indoor environment. The test environment was chosen
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Example Study

The videos are available on YouTube:
https://youtu.be/UuUo9Q0OT1Q

https://youtu.be/UuUo9Q0OT1Q
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Conclusion

I Good performance even using magnetic only:
I Time-to-convergence: 12 s.
I Distance-to-convergence: 13 m.
I Error after convergence: 5 m (best case 1–2 m.).

I What to do to take this further:
I Sensor calibration.
I Pedestrian dead-reckoning.
I Further sensor fusion (satellite and radio).
I SLAM.
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Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. Accepted for publication in IEEE Transactions on
Robotics.
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I Come and see the poster!

I Homepage:
http://arno.solin.fi
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