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Smoothing problem

Given observed data y1:T , estimate (statistics of) marginal posteriors p(xt|y1:T ) with

p(x1:T |y1:T ) =
p(x1:T )p(y1:T |x1:T )

p(y1:T )
p(y1:T ) =

∑
x1:T

p(x1:T )p(y1:T |x1:T )

NB is different from filtering problem p(xt|y1:t).
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Smoothing problem

Given observed data y1:T , estimate (statistics of) marginal posteriors p(xt|y1:T ) with

p(x1:T |y1:T ) =
p(x1:T )p(y1:T |x1:T )

p(y1:T )
p(y1:T ) =

∑
x1:T

p(x1:T )p(y1:T |x1:T )

NB is different from filtering problem p(xt|y1:t).

Common approaches:
Kalman Filtering: exact for linear dynamics and Gaussian observations
Variational, EP, extended Kalman Filter: valid for simple posterior distributions
Particle filtering, SMC: generic, but inefficient
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Time series inference

Prior process p(x1:T |x0):

dXt = dWt x0 = 1

Observation at end time only: p(yT |xT ) = exp(−βx2
T )
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Red: p(xt|y1:t, x0) (exact)
Blue: p(xt|y1:t, x0) (PF)
Black: p(xt|y1:T , x0) (exact)
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Time series inference

Prior process p(x1:T |x0):

dXt = dWt x0 = 1

Observation at end time only: p(yT |xT ) = exp(−βx2
T )
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Red: p(xt|y1:t, x0) (exact)
Blue: p(xt|y1:t, x0) (PF + resampling)
Black: p(xt|y1:T , x0) (exact)
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Time series inference

Prior process p(x1:T |x0):

dXt = dWt x0 = 1

Observation at end time only: p(yT |xT ) = exp(−βx2
T )
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Samples from filtered distribution do not well represent smoothed distribution.

Bert Kappen 5



Control approach to time-series inference

Outline:

• Introduction to control theory and path integral control theory

• Optimal control↔ optimal sampling

• Adaptive importance sampler: Estimate improved sampler from self-generated
data

• fMRI application
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Control theory
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Consider a stochastic dynamical system

dXt = f (Xt, u)dt + dWt E(dWt,idWt. j) = νi jdt

Given X0 find control function u(x, t) that minimizes the expected future cost

C = E

(
φ(XT ) +

∫ T

0
dtV(Xt, u(Xt, t))

)
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Control theory
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Standard approach: define J(x, t) is optimal cost-to-go from x, t.

J(x, t) = min ut:TEu

(
φ(XT ) +

∫ T

t
dtV(Xt, u(Xt, t))

)
Xt = x

J satisfies a partial differential equation

−∂tJ(t, x) = min
u

(
V(x, u) + f (x, u)∇xJ(x, t) +

1
2
ν∇2

xJ(x, t)
)

J(x,T ) = φ(x)

with u = u(x, t).This is HJB equation. Optimal control u∗(x, t) defines distribution
over trajectories p∗(τ) (= p(τ|x0, 0)).
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Path integral control theory
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dXt = f (Xt, t)dt + g(Xt, t)(u(Xt, t)dt + dWt) X0 = x0

Goal is to find function u(x, t) that minimizes

C = Eu

(
S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2
)

S (τ) = φ(XT ) +

∫ T

0
V(Xt, t)
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Path integral control theory
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Equivalent formulation: Find distribution over trajectories p that minimizes 2

C(p) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)
q(τ|x0, 0) is distribution over uncontrolled trajectories.

The optimal solution is given by p∗(τ) = 1
ψ
q(τ)e−S (τ)

2Eu
∫ T
0 dt1

2u(Xt, t)2 =
∫

dτp(τ) log p(τ)
q(τ) .
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Path integral control theory
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Equivalent formulation: Find distribution over trajectories p that minimizes

C(p) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)
q(τ|x0, 0) is distribution over uncontrolled trajectories.

The optimal solution is given by p∗(τ) = 1
ψ
q(τ)e−S (τ) = p(τ|u∗).

Equivalence of optimal control and discounted cost (Girsanov)

Bert Kappen 11



Path integral control theory
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The optimal control cost is C(p∗) = − logψ = J(x0, 0) with

ψ =

∫
dτq(τ)e−S (τ) = Eqe−S

J(x, t) can be computed by forward sampling from q.
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Estimating ψ = Ee−S
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ESS = 1.8, C=31.7

Sample N trajectories from uncontrolled dynamics

τi ∼ q(τ) wi = e−S (τi) ψ̂ =
1
N

∑
i

wi

ψ̂ unbiased estimate of ψ.

Sampling efficiency is inversely proportional to variance in (normalized) wi.

ES S =
N

1 + N2Var(w)
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Importance sampling
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ESS = 1.8, C=31.7
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ESS = 3.5, C=5.0
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ESS=9.5, C=2.0

Sample N trajectories from controlled dynamics and reweight yields unbiased es-
timate of cost-to-go:

τi ∼ p(τ) wi = e−S (τi) q(τi)
p(τi)

= e−S u(τi) ψ̂ =
1
N

∑
i

wi

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt
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Importance sampling
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ESS = 1.8, C=31.7
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ESS=9.5, C=2.0

S u(τ) = S (τ) +

∫ T

0
dt

1
2

u(Xt, t)2 +

∫ T

0
u(Xt, t)dWt

Thm:
• Better u (in the sense of optimal control) provides a better sampler (in the sense
of effective sample size).
• Optimal u = u∗ (in the sense of optimal control) requires only one sample and
S u(τ) deterministic!

Thijssen, Kappen 2015
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Proof

Control cost is C(p) = Ep

(
S (τ) + log p(τ)

q(τ)

)
= ES u

Using Jensen’s inequality:

C∗ = − log
∑
τ

q(τ)e−S (τ) = − log
∑
τ

p(τ)e−S (τ)−log p(τ)
q(τ) ≤

∑
τ

p(τ)
(
S (τ) + log

p(τ)
q(τ)

)
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Proof

Control cost is C(p) = Ep

(
S (τ) + log p(τ)

q(τ)

)
Using Jensen’s inequality:

C∗ = − log
∑
τ

q(τ)e−S (τ) = − log
∑
τ

p(τ)e−S (τ)−log p(τ)
q(τ) ≤

∑
τ

p(τ)
(
S (τ) + log

p(τ)
q(τ)

)
= C(p)

The inequality is saturated when S (τ) + log p(τ)
q(τ) has zero variance: left and right

side evaluate to S (τ) + log p(τ)
q(τ) .

This is realized when p = p∗ 3.

3p∗ exists when
∑
τ q(τ)e−S (τ) < ∞
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The Path Integral Cross Entropy (PICE) method

We wish to estimate

ψ =

∫
dτq(τ)e−S (τ)

The optimal (zero variance) importance sampler is p∗(τ) = 1
ψ
q(τ)e−S (τ).

We approximate p∗(τ) with pu(τ), where u(x, t|θ) is a parametrized control function.

Following the Cross Entropy method, we minimise KL(p∗|pu).

∆θ ∝ −
KL(p∗|pu)

∂θ
∝ −Eue−S u

∫ T

0
dWt

∂u(Xt, t|θ)
∂θ

u(x, t|θ) is arbitrary.

Estimate gradient by sampling.

Kappen, Ruiz 2016
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Coordination of UAVs

Chao Xu ACC 2017

‘
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Control↔ Inference

Fleming, Mitter
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Path integral control theory
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Equivalent formulation: Find distribution over trajectories p that minimizes

C(p) =

∫
dτp(τ)

(
S (τ) + log

p(τ)
q(τ)

)
q(τ|x0, 0) is distribution over uncontrolled trajectories.

The optimal solution is given by p∗(τ) = 1
ψ
q(τ)e−S (τ) = p(τ|u∗).

q(τ) is the prior process p(x1:T |x0) and e−S (τ) =
∏

t p(yt|xt).
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Control versus particle smoothing

Linear stochastic dynamics, Gaussian observations at t = 0,T .

Control method with linear time dependent controller u(x, t) = a(t)x+b(t). N = 2000
particles, 15 IS iterations. ESS from 1.5% to 98%.

FS with N = 2000 particles. ESS = 2%.
FFBSi with N = M = 2000 forward and backward particles. ESS = 7%.

Control error in posterior mean is 2 orders of magnitude smaller than FFBSi error.
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Control versus particle smoothing

Linear stochastic dynamics, Gaussian observations at t = 0,T .

FFBSi error in posterior mean (average over time) increases with more unlikely
observations, while control error does not.
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Control method scales with many observations

Linear stochastic dynamics, Gaussian observations at t = 0,T .
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Non linear problem

5 dimensional neural network model with 20 − 42 observation of one neuron.

Left: Number of iterations needed to reach ESS=0.1 versus number of observa-
tions (N = 6000).
Annealing vital for large number of observations.
Right: Number of iterations needed to reach ESS=0.1 versus number of particles
(25 observations).
Annealing allows significant less number of particles.
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Non linear problem

5 dimensional neural network model with 20 − 42 observation of one neuron.

Variance of posterior mean for APIS, FS and FFBSi versus number of observa-
tions. N = 6000 forward particles. Backward particles such that APIS and FFBSi
have similar CPU time.
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Non linear problem

5 dimensional neural network model with 20 − 42 observation of one neuron.

ESS for typical run of APIS with annealing. N = 7500
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Infering neural activity from BOLD fMRI

Subjects were asked to respond as fast as possible to a visual or auditory stimulus
Measure fMRI BOLD response in motor cortex

Reconstruct neural signal from BOLD signal.

Neural activity dZt = AZtdt + σzdWt

↓

Hemodynamics
Vasodilation s(z, s, f )
Blood flow f (s)

↓

Balloon model
Blood volume v( f , v)
Deoxygenated hemoglobin q( f , v, q)

↓

BOLD y(v, q)
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Infering neural activity from BOLD fMRI

u(x, t) = a(t)x + b(t). 50.000 particles, 120 iterations.

Error in stimulus time reconstruction ≈ 0.05 − 0.77s.
Error using fit of two Gamma functions ≈ 0.08 − 1.52s
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Summary

Smoothing problem (Bayesian posterior computation in time series) can be formu-
lated as a stochastic optimal control problem (Fleming 1990).
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Summary

Smoothing problem (Bayesian posterior computation in time series) can be formu-
lated as a stochastic optimal control problem (Fleming 1990).

Better controller = Better sampler.

Parametrized controller found by optimizing Cross Entropy can be (in principle)
arbitrary accurate.

Improved performance compared to state of the art SMC.

Excellent parallelization possible.
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Thank you!
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