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Hidden Markov model

Latent process {Xt}t≥0 on (X,X );
– A Markov chain.

Observed process {Yt}t≥0 on (Y,Y).

Interested in:

1 P (xT | y0:T−1) ≡ πT (xT )

– known as predictive density.

2 γT =
∫
XT p(y0:T−1 | x0:T−1) p(x0:T−1) dx0:T−1, γ0 ≡ 1

– likelihood of first T observations y0:T−1.
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Bootstrap particle filter

Hidden Markov model dynamics:

X0 ∼ π0(·)
Xt|{Xt−1 = xt−1} ∼ Kt(xt−1, ·), t ≥ 1,

Yt|{Xt = xt} ∼ gt(xt, ·), t ≥ 0.

Bootstrap particle filter generates samples {X̃0,i; 1 ≤ i ≤ N}
from π0;
– Local operation.

Assigns weights wt,i ∝ gt(X̃t,i, yt),
∑N
i=1 wt,i = 1;

– Local operation.

Resamples {X̃t,i; 1 ≤ i ≤ N} according to {wt,i; 1 ≤ i ≤ N} to get
{Xt,i; 1 ≤ i ≤ N};
– Global operation.

Mutates Xt,i according to Kt+1(Xt,i, ·): X̃t+1,i ∼ Kt+1(Xt,i, ·);
– Local operation.
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Resampling

Resampling consists of first choosing ancestors {at,i; 1 ≤ i ≤ N}
and then setting Xt,i = X̃t,at,i such that

E

{
1

N

N∑
i=1

ϕ(Xt,i)

}
=

N∑
i=1

wt,i ϕ(X̃t,i) (1)

for any function ϕ for which the expectation is finite.
There are many ways of choosing {at,i; 1 ≤ i ≤ N} such that
condition (1) is satisfied, e.g., multinomial resampling, residual
resampling, systematic resampling.
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Bottleneck in parallelising: resampling

Question How to parallelise the resampling step?

Solution Reduce interactions between particles.

Bootstrap particle filter has interactions between all particles.

Important consideration Bootstrap particle filter is stable.
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Local exchange particle filter

Heine & Whiteley (2016) considers a particle filter with a “local
exchange” mechanism.

They call it the local exchange particle filter.

They prove a central limit theorem as the network size →∞.

They provide counter-examples for stability.
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αSMC

Proposed by Whiteley, Lee & Heine (2016).

Interactions between particles is controlled by a sequence of
Markov transition matrices {αt}t≥0.

Each αt can be interpreted as a (weighted) network of
connections.

Particles resample locally from among neighbours they are
connected to in the network.

αSMC provides an estimate π̂NT of πT and γ̂NT of γT .

– N denotes the number of particles used.
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αSMC

Let αijt denote the (i, j)-th element of the matrix αt.

Algorithm

At t = 0:

Set W0,i = 1 and sample X0,i ∼ π0.

At t ≥ 1:

Set Wt,i =
∑N
j=1 α

ij
t−1Wt−1,j gt−1(Xt−1,j).

Sample

Xt,i ∼
1

Wt,i

N∑
j=1

αijt−1Wt−1,j gt−1(Xt−1,j)Kt(Xt−1,j , ·).

end

π̂NT (ϕ) =

N∑
i=1

WT,i∑N
j=1WT,j

ϕ(XT,i) and γ̂NT =
1

N

N∑
i=1

WT,i.
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Instances of αSMC

Sequential importance sampling Local exchange particle filter
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Bootstrap particle filter In general
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Network architectures

(bootstrap particle filter) (island particle filter) (αSMC)
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Choosing networks

Whiteley, Lee & Heine (2016) recognises that algorithmically
controlling the effective sample size (ESS) leads to time-uniform
convergence.

They introduce schemes for adaptively choosing {αt}t≥0 such
that the resulting αSMC is stable.

Lee & Whiteley (2016) extends the work of Whiteley, Lee &
Heine (2016).

They show how graphs that model the interaction among
particles can be induced by tree data structures which model the
network topology of a distributed computing environment.

They present efficient distributed algorithms that are stable and
operate on forests associated with these trees.
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Random connections

Assume that there exist constants κK <∞ and κg <∞ such that

κ−1K ≤ Kt ≤ κK and κ−1g ≤ gt ≤ κg ∀ t.

Consider αSMC with N particles where each particle connects
randomly to CN other particles at each time.

Theorem (Sen-T (2017))

If CN →∞ as N →∞ and connections are chosen randomly,

lim
N→∞

var
{√

N γ̂NT

}
= lim

N→∞
var
{√

N γ̂NT,bootstrap

}
,

lim
N→∞

var
{√

N π̂NT (ϕ)
}

= lim
N→∞

var
{√

N π̂NT,bootstrap(ϕ)
}
.

If CN →∞, there is no asymptotic cost of αSMC over the
bootstrap particle filter!
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Random connections

Theorem (Sen-T (2017))

If CN ≡ C and connections are chosen randomly,

lim
N→∞

var
{√

N γ̂NT

}
= lim

N→∞
var
{√

N γ̂NT,bootstrap

}
+

CstγT
C

+O
(

1

C2

)
,

lim
N→∞

var
{√

N π̂NT (ϕ)
}

= lim
N→∞

var
{√

N π̂NT,bootstrap(ϕ)
}

+
CstπT
C

+O
(

1

C2

)
.

If CN ≡ C, the asymptotic cost of αSMC over the bootstrap
particle filter is O(1/C).
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Random connections

Theorem (Sen-T (2017))

The asymptotic variance of αSMC is stable over time if CN > κ4g κK

sup
T≥0

lim
N→∞

var
{√

N π̂NT (ϕ)
}
<∞.
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Spectral gap

Eigenvalues of Markov transition matrix α ∈ RN×N

1 = λ1 ≥ λ2 ≥ · · · ≥ λN > −1.

The absolute spectral gap of α is

Gap(α) := 1− N
max
i=2
|λi|.

This quantifies how rapidly information can flow in the network.
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Examples of spectral gaps

For sequential importance sampling, Gap(α) ≡ 0.

– Not stable.

For the local exchange particle filter, Gap(α)→ 0 as N →∞.

– Not necessarily stable.

For the bootstrap particle filter, Gap(α) ≡ 1.

– Stable.

Question Is there a threshold for the spectral gap beyond which
αSMC is stable?
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Stability of αSMC

Consider a fixed doubly-stochastic matrix α.

Theorem (Sen-T (2017))

The αSMC algorithm is stable in time as soon as the absolute spectral
gap is large enough

Gap(α) > 1− 1

κ2g
.

As long as the absolute spectral gap is large enough,

sup
{√

N ×
∣∣∣∣∣∣π̂NT − πT ∣∣∣∣∣∣ : T ≥ 0

}
<∞,

where

|||µ− ν|||2 ≡ sup
{

E
[
(µ(ϕ)− ν(ϕ))

2
]

: ϕ ∈ B(X)
}
.

B(X) denotes the set of all bounded functions on (X,X ).
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Graphs with large spectral gaps

Ramanujan graphs are C-regular graphs on N vertices for which

Gap(α) ≥ 1− 2
√
C − 1

C
.

Alon-Friedman: with high probability, the absolute spectral gap
of a random walk on a C-regular graph with N vertices is large,

Gap(α) ≥P 1− 2√
C
− ε

C

for any ε > 0.

This gives an algorithmic way of creating large C-regular graphs
with large spectral gaps (i.e., expander graphs).
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Spectral gaps of random graphs
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Figure: 90% confidence interval for adjacency matrices of spectral gaps of
random C-regular graphs on N vertices.
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Numerical example

Consider the hidden Markov model given by

Xt+1 = −1

2
(Xt − 1) + N (0, 1), X0 = 0,

Yt = Xt +N (0, 0.22).

We compare the following:

(a) Local exchange particle filter.

(a) αSMC with a random C-regular graph.

– A random α matrix is chosen at time 0 and then fixed
thereafter.

(b) αSMC when connections are chosen randomly at each time.

The bootstrap particle filter is used as a benchmark.
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Performance w.r.t. connectivity strength

N = 2× 103, T = 2× 102.
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Figure: Relative performances with respect to the bootstrap particle filter
of using (a) a local exchange mechanism, (b) a random C-regular graph,
and (c) random connections at each time.
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Performance w.r.t. network size

T = 2× 102.
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Figure: Relative performances of αSMC with respect to the bootstrap
particle filter.
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Performance w.r.t. network size

T = 2× 102.
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Figure: Relative performances of αSMC with respect to the bootstrap
particle filter.
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Performance over time

N = 103, C = 10.
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Figure: Relative performances of αSMC with respect to the bootstrap
particle filter.
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Performance over time

N = 103, C = 30.
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Figure: Relative performances of αSMC with respect to the bootstrap
particle filter.
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Conclusions

The resampling step is the main bottleneck in parallelising
particle filters.

Reducing interactions between particles is one way to speed
things up.

Controlling the absolute spectral gap of the communication
network is enough to guarantee time-uniformly stable algorithms.

This can be done using Ramanujan graphs and expander graphs.

If connections between particles are random, the resulting
algorithm is asymptotically equivalent to the bootstrap particle
filter if the number of connections increases to infinity with the
number of particles.

If the number of random connections is fixed at C, the extra
asymptotic variance over the bootstrap particle filter is O(1/C).
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