Communication Efficient Sequential Monte Carlo

DEBORSHEE SEN Department of Statistics and Applied Probability, National University of Singapore deborshee.sen@u.nus.edu

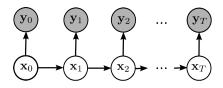
SMC WORKSHOP, UPPSALA (2017)

Joint work with ALEXANDRE THIERY of NUS

Communication Efficient Sequential Monte Carlo

Deborshee Sen

Hidden Markov model



- Latent process $\{X_t\}_{t\geq 0}$ on (X, \mathcal{X}) ; - A Markov chain.
- Observed process $\{Y_t\}_{t\geq 0}$ on $(\mathsf{Y}, \mathcal{Y})$.

Interested in:

- $P(x_T \mid y_{0:T-1}) \equiv \pi_T(x_T)$
 - known as *predictive density*.

Bootstrap particle filter

Hidden Markov model dynamics:

$$X_0 \sim \pi_0(\cdot)$$

$$X_t | \{ X_{t-1} = x_{t-1} \} \sim K_t(x_{t-1}, \cdot), \quad t \ge 1,$$

$$Y_t | \{ X_t = x_t \} \sim g_t(x_t, \cdot), \quad t \ge 0.$$

- Bootstrap particle filter generates samples $\{\widetilde{X}_{0,i}; 1 \leq i \leq N\}$ from π_0 ;
 - **Local** operation.
- Assigns weights $w_{t,i} \propto g_t(\widetilde{X}_{t,i}, y_t), \sum_{i=1}^N w_{t,i} = 1;$ - Local operation.
- Resamples $\{\widetilde{X}_{t,i}; 1 \leq i \leq N\}$ according to $\{w_{t,i}; 1 \leq i \leq N\}$ to get $\{X_{t,i}; 1 \leq i \leq N\};$ - Global operation.
- Mutates $X_{t,i}$ according to $K_{t+1}(X_{t,i}, \cdot)$: $\widetilde{X}_{t+1,i} \sim K_{t+1}(X_{t,i}, \cdot)$; - Local operation.

Resampling

• Resampling consists of first choosing ancestors $\{a_{t,i}; 1 \le i \le N\}$ and then setting $X_{t,i} = \widetilde{X}_{t,a_{t,i}}$ such that

$$\operatorname{E}\left\{\frac{1}{N}\sum_{i=1}^{N}\varphi(X_{t,i})\right\} = \sum_{i=1}^{N}w_{t,i}\varphi(\widetilde{X}_{t,i})$$
(1)

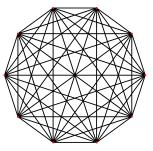
for any function φ for which the expectation is finite.

• There are many ways of choosing $\{a_{t,i}; 1 \leq i \leq N\}$ such that condition (1) is satisfied, e.g., multinomial resampling, residual resampling, systematic resampling.

Bottleneck in parallelising: resampling

Question How to parallelise the resampling step? **Solution** Reduce interactions between particles.

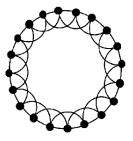
• Bootstrap particle filter has interactions between all particles.



Important consideration Bootstrap particle filter is **stable**.

Local exchange particle filter

• *Heine & Whiteley (2016)* considers a particle filter with a "local exchange" mechanism.



- They call it the *local exchange particle filter*.
- They prove a central limit theorem as the network size $\rightarrow \infty$.
- They provide counter-examples for stability.

- Proposed by Whiteley, Lee & Heine (2016).
- Interactions between particles is controlled by a sequence of Markov transition matrices {α_t}_{t≥0}.
- Each α_t can be interpreted as a (weighted) network of connections.
- Particles resample locally from among neighbours they are connected to in the network.
- α SMC provides an estimate $\widehat{\pi}_T^N$ of π_T and $\widehat{\gamma}_T^N$ of γ_T . - N denotes the number of particles used.

• Let α_t^{ij} denote the (i, j)-th element of the matrix α_t .

Algorithm

 $\begin{aligned} & \underline{\operatorname{At} t = 0:} \\ & \operatorname{Set} W_{0,i} = 1 \text{ and sample } X_{0,i} \sim \pi_0. \\ & \underline{\operatorname{At} t \geq 1:} \\ & \operatorname{Set} W_{t,i} = \sum_{j=1}^N \alpha_{t-1}^{ij} W_{t-1,j} \, g_{t-1}(X_{t-1,j}). \\ & \operatorname{Sample} \\ & X_{t,i} \sim \frac{1}{W_{t,i}} \sum_{j=1}^N \alpha_{t-1}^{ij} \, W_{t-1,j} \, g_{t-1}(X_{t-1,j}) \, K_t(X_{t-1,j}, \cdot). \end{aligned}$

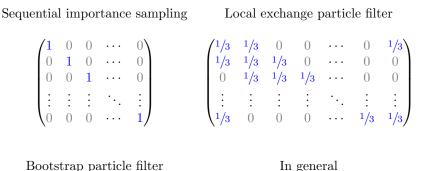
end

$$\widehat{\pi}_T^N(\varphi) = \sum_{i=1}^N \frac{W_{T,i}}{\sum_{j=1}^N W_{T,j}} \varphi(X_{T,i}) \quad \text{and} \quad \widehat{\gamma}_T^N = \frac{1}{N} \sum_{i=1}^N W_{T,i}.$$

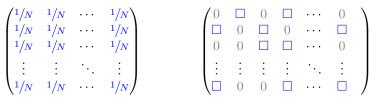
Communication Efficient Sequential Monte Carlo

Deborshee Sen

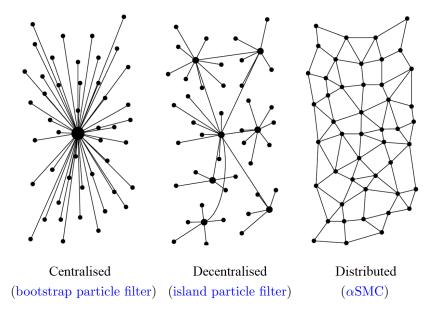
Instances of αSMC



In general



Network architectures



Choosing networks

- Whiteley, Lee & Heine (2016) recognises that algorithmically controlling the effective sample size (ESS) leads to time-uniform convergence.
- They introduce schemes for adaptively choosing $\{\alpha_t\}_{t\geq 0}$ such that the resulting α SMC is stable.
- Lee & Whiteley (2016) extends the work of Whiteley, Lee & Heine (2016).
- They show how graphs that model the interaction among particles can be induced by tree data structures which model the network topology of a distributed computing environment.
- They present efficient distributed algorithms that are stable and operate on forests associated with these trees.

Communication Efficient Sequential Monte Carlo

Deborshee Sen

Random connections

Assume that there exist constants $\kappa_K < \infty$ and $\kappa_g < \infty$ such that

$$\kappa_K^{-1} \le K_t \le \kappa_K$$
 and $\kappa_g^{-1} \le g_t \le \kappa_g \quad \forall t.$

• Consider α SMC with N particles where each particle connects randomly to C_N other particles at each time.

Theorem (Sen-T (2017))

If $C_N \to \infty$ as $N \to \infty$ and connections are chosen randomly,

$$\lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\gamma}_T^N \right\} = \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\gamma}_{T, \text{bootstrap}}^N \right\},$$
$$\lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\pi}_T^N(\varphi) \right\} = \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\pi}_{T, \text{bootstrap}}^N(\varphi) \right\}.$$

• If $C_N \to \infty$, there is **no asymptotic cost** of α SMC over the bootstrap particle filter!

Theorem (Sen-T (2017))

If $C_N \equiv C$ and connections are chosen randomly,

$$\begin{split} \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\gamma}_T^N \right\} &= \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\gamma}_{T, \text{bootstrap}}^N \right\} \\ &+ \frac{Cst_T^{\gamma}}{C} + \mathcal{O}\left(\frac{1}{C^2}\right), \\ \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\pi}_T^N(\varphi) \right\} &= \lim_{N \to \infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\pi}_{T, \text{bootstrap}}^N(\varphi) \right\} \\ &+ \frac{Cst_T^{\pi}}{C} + \mathcal{O}\left(\frac{1}{C^2}\right). \end{split}$$

• If $C_N \equiv C$, the asymptotic cost of α SMC over the bootstrap particle filter is $\mathcal{O}(1/C)$.

Theorem (Sen-T (2017))

The asymptotic variance of αSMC is stable over time if $C_N > \kappa_a^4 \kappa_K$

$$\sup_{T>0} \lim_{N\to\infty} \operatorname{var} \left\{ \sqrt{N} \, \widehat{\pi}^N_T(\varphi) \right\} < \infty.$$

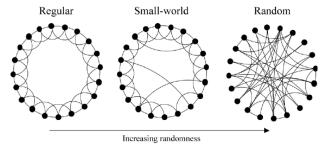
• Eigenvalues of Markov transition matrix $\alpha \in \mathbb{R}^{N \times N}$

$$1 = \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N > -1.$$

• The absolute spectral gap of α is

$$\operatorname{Gap}(\alpha) := 1 - \max_{i=2}^{N} |\lambda_i|.$$

• This quantifies how rapidly information can flow in the network.



Communication Efficient Sequential Monte Carlo

Deborshee Sen

Examples of spectral gaps

- For sequential importance sampling, $Gap(\alpha) \equiv 0$. - Not stable.
- For the local exchange particle filter, $\operatorname{Gap}(\alpha) \to 0$ as $N \to \infty$. – Not necessarily stable.
- For the bootstrap particle filter, $Gap(\alpha) \equiv 1$. – Stable.

Question Is there a threshold for the spectral gap beyond which α SMC is stable?

Stability of α SMC

• Consider a fixed doubly-stochastic matrix α .

Theorem (Sen-T (2017))

The αSMC algorithm is stable in time as soon as the absolute spectral gap is large enough

$$Gap(\alpha) > 1 - \frac{1}{\kappa_g^2}.$$

• As long as the absolute spectral gap is large enough,

$$\sup\left\{\sqrt{N}\times\left\|\left\|\widehat{\pi}_{T}^{N}-\pi_{T}\right\|\right\|:T\geq0\right\}<\infty,$$

where

$$\left\|\left\|\mu-\nu\right\|\right\|^{2} \equiv \sup\left\{ \mathbb{E}\left[\left(\mu(\varphi)-\nu(\varphi)\right)^{2}\right] : \varphi \in \mathcal{B}(\mathsf{X})\right\}.$$

 $\bullet~\mathcal{B}(X)$ denotes the set of all bounded functions on $(X,\mathcal{X}).$

Graphs with large spectral gaps

• Ramanujan graphs are C-regular graphs on N vertices for which

$$\operatorname{Gap}(\alpha) \geq 1 - \frac{2\sqrt{C-1}}{C}.$$

• Alon-Friedman: with high probability, the absolute spectral gap of a random walk on a C-regular graph with N vertices is large,

$$\operatorname{Gap}(\alpha) \ge_{\mathrm{P}} 1 - \frac{2}{\sqrt{C}} - \frac{\varepsilon}{C}$$

for any $\varepsilon > 0$.

• This gives an algorithmic way of creating large *C*-regular graphs with large spectral gaps (i.e., expander graphs).

Spectral gaps of random graphs

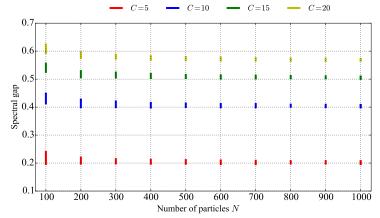


Figure: 90% confidence interval for adjacency matrices of spectral gaps of random C-regular graphs on N vertices.

Numerical example

• Consider the hidden Markov model given by

$$X_{t+1} = -\frac{1}{2}(X_t - 1) + \mathcal{N}(0, 1), \quad X_0 = 0,$$

$$Y_t = X_t + \mathcal{N}(0, 0.2^2).$$

• We compare the following:

(a) Local exchange particle filter.

(a) α SMC with a random C-regular graph.

– A random α matrix is chosen at time 0 and then fixed thereafter.

(b) α SMC when connections are chosen randomly at each time.

• The bootstrap particle filter is used as a benchmark.

Performance w.r.t. connectivity strength

• $N = 2 \times 10^3, T = 2 \times 10^2.$

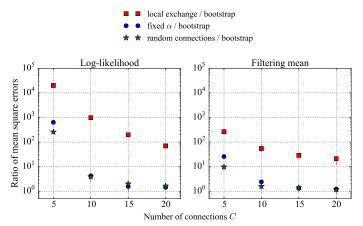


Figure: Relative performances with respect to the bootstrap particle filter of using (a) a local exchange mechanism, (b) a random C-regular graph, and (c) random connections at each time.

Performance w.r.t. network size

• $T = 2 \times 10^2$.

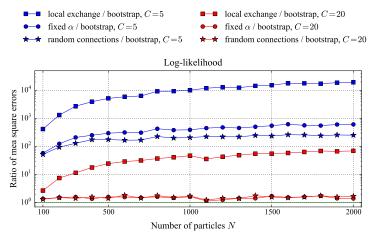


Figure: Relative performances of α SMC with respect to the bootstrap particle filter.

Performance w.r.t. network size

• $T = 2 \times 10^2$.

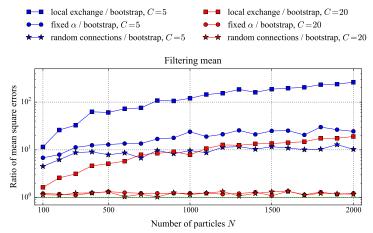


Figure: Relative performances of α SMC with respect to the bootstrap particle filter.

Performance over time

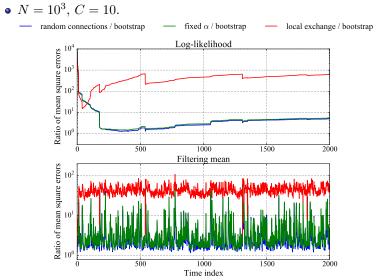


Figure: Relative performances of α SMC with respect to the bootstrap particle filter.

Performance over time

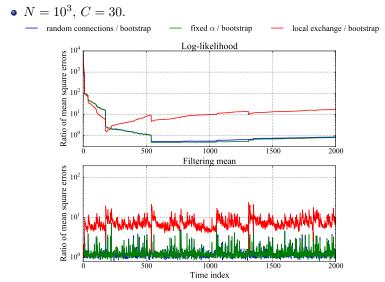


Figure: Relative performances of α SMC with respect to the bootstrap particle filter.

- The resampling step is the main bottleneck in parallelising particle filters.
- Reducing interactions between particles is one way to speed things up.
- Controlling the absolute spectral gap of the communication network is enough to guarantee time-uniformly stable algorithms.
- This can be done using Ramanujan graphs and expander graphs.
- If connections between particles are random, the resulting algorithm is asymptotically equivalent to the bootstrap particle filter if the number of connections increases to infinity with the number of particles.
- If the number of random connections is fixed at C, the extra asymptotic variance over the bootstrap particle filter is $\mathcal{O}(1/C)$.

References

α **SMC**:

- Heine, K., & Whiteley, N. (2016). "Fluctuations, stability and instability of a distributed particle filter with local exchange." Stochastic Processes and their Applications.
- 2 Lee, A., & Whiteley, N. (2016). "Forest resampling for distributed sequential Monte Carlo." Statistical Analysis and Data Mining: The ASA Data Science Journal, 9(4), 230-248.
- Whiteley, N., Lee, A., & Heine, K. (2016). "On the role of interaction in sequential Monte Carlo algorithms." *Bernoulli*, 22(1), 494-529.

Spectral gaps:

- Alon, N. "Eigenvalues and expanders." Combinatorica 6.2 (1986): 83-96.
- Priedman, J. "A proof of Alon's second eigenvalue conjecture." Proceedings of the thirty-fifth annual ACM symposium on Theory of computing. ACM, 2003.
- Lubotzky, Alexander, Ralph Phillips, and Peter Sarnak.
 "Ramanujan graphs." Combinatorica 8.3 (1988): 261-277

Communication Efficient Sequential Monte Carlo

Deborshee Sen