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Feynman-Kac path measure

@ Consider a non-homogenous Markov chain (X:):cp:7] on (X, &)
with law

T
Q(dXO:T) = N(dXO) H Mt(Xt—h dXt)
t=1

@ Given positive bounded potential functions (Gt ):co.7], define
Feynman-Kac path measure

-

P(dxo.7) = Go(xo0) H Ge(xe—1, Xt)@(dXO:T)Z_1

t=1

where Z := Eg [Go(xo) 7, Gt(Xt_l,Xt)]

o The quantities {11, (Me)eeqr: 7], (Gt )eefo:7) } depend on the specific
application

@ Applications of interest: static models and state space models
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Sequential Monte Carlo methods

@ SMC methods simulate an interacting particle system of size
NeN

o At time t = 0 and particle n € [1: N]

o sample Xg ~ p;
o sample ancestor index A§ ~ R (Go(Xg), .., Go(X3'))
o For time t € [1: T] and particle n € [1: N]
Al_a

o sample X" ~ M(X.*7%,);
1 N
o sample ancestor index A} ~ R (Gt(XtAjIl,th), ceey Gt(XtAjIl,XtN))
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Sequential Monte Carlo methods

@ Particle approximation of P

where X[+ is obtained by tracing ancestral lineage of particle X7
@ Unbiased estimator of Z

- o0 TT{ & S aod )

t=1
@ Convergence properties of PV and ZV as N — oo are now
well-understood

@ However quality of approximation can be inadequate for practical
choices of N

@ Performance crucially depends on discrepancy between P and Q
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Twisted path measures

o Consider change of measure prescribed by positive and bounded
functions ¢ = (Ye)eepo

@ Refer to ¢ as an admissible policy and denote set of all
admissible policies as ¥

@ Given a policy ¢ € W, define 1-twisted path measure of Q as

.
QY (dxo:7) = ¥ (dxo) [ [ MY (-1, dxe)
t=1

where
dxo)tbo(x0) b . Mi(xe—1, dxe) e (Xe—1, Xt)
1 (dxo) == ,u(oi’ M (xe—1, dx) == ,
1(vo) Me(¢)(xe—1)
forte[1:T]
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Twisted path measures

o Given ¥ € U, we have

.
P(dxo.7) = G (x0) H G (xe—1, %) Q¥ (dxo.7)Z 7!

t=1
where
¢y - AY0) Go(x0) M1 (¥1)(x0)
GO ( 0) T 'Q[J()(X()) )
P x ) = Gt(Xt—l,Xt)Mt+1(1/)t+1)(Xt) . .
G (Xe—1,%) 1= el ) , tell:T—1],

Gr(xT-1,%T)

G$(XT_1’XT) . Yr(xr_1,x7)’

are the twisted potentials associated with Q¥

o Note Z = Egu [G#(XO) Hthl G¥(Xe—1,X:)| by construction
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Twisted SMC methods

@ Assume policy ¥ € V is such that:
o sampling p* and (M;/))te[LT] feasible
o evaluating (G:p)tE[O:T] tractable
@ Construct ¢-twisted SMC method as standard SMC applied to
{Mw’ (Mgp)tE[I:T]v (G;p)te[O:T]}

@ Particle approximation of P and Z

N N N
1 1 n 1 AL un
[P%N:NZ(SXET’ ZUN _ {NZG(;”(XO)}H{ Gl (X[ ,Xt)}
n=1 n=1 1

t=1

=]
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Optimal policies

[

A policy with constant functions recover standard SMC method

©

Consider an iterative scheme to refine policies

Given current policy 1) € W, twisting Q¥ further with policy ¢ € W
results in a twisted path measure (Q¥)?

Note that (Q¥)? = Q¥'? where 1 - ¢ = (¢t - d¢)ecio: 7]
Choice of ¢ is guided by the following optimality result

©

[

[
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Optimal policies

For any 1) € V, under the policy ¢* = (¢I)te[0: 7 defined recursively as

$7(xT-1,xT) = G} (x7-1,x7),
07 (xe—1, %) = G (xe—1, X )M, 1 (0511) (%), te[T—1:1],
$5(x0) = Gg (x0) MY (67)(x0),

the refined policy 1* := 1) - ¢* satisfies:

(i) P= QY";
(i) Z¥"N = Z almost surely for any N € N.

Jeremy Heng Controlled SMC 9/31



Optimal policies

@ Refer to ¢* as the optimal policy w.r.t. Q¥
@ The refined policy ¥* = 9 - ¢* is the optimal policy w.r.t. Q
@ 1*-twisted potentials

G (x0)=2, G (x-1,x)=1, te[l:T]

@ Under ¢*-twisted SMC method

forall te[0: T]
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Optimal policies

@ The connection to Kullback-Leibler optimal control is given by

The functions V; := —log ¢5,t € [0: T] are the optimal value functions
of the KL control problem

inf KL ((Q")’IP)
where ® := {¢ € ¥ : KL((Q¥)?|P) < oo}.

@ The following is a characterization of ¢* in a specific setting

Proposition

For any policy 1) € W such that the corresponding twisted potentials
(th’ )eeo: 7] and transition densities of (Mf’ )ee[: 7] are log-concave on
their domain of definition, then the optimal policy ¢* = (¢7)e[o:7] W.r.t.
QY is a sequence of log-concave functions.
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Dynamic programming recursions

@ Simplify notation by defining the Bellman operators (QZf’)te[o:T_ll
@ Rewrite the backward recursion defining ¢* = (¢7):eqo: 7] as

o7 = 67,
0f = Qi te[T—1:0]
where
QL () (x,¥) = G (x, )M (2)(¥)
o It will be convenient to view Qf : L2(v},,) — L?(v{) where
1/8/’ =¥, vl(dx,dy) = nf’_l(dx)MZ/’(x, dy)

@ Need to approximate this recursion in practice
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Approximate projections

@ Given probability measure v and function class F C L?(v),
o Define (logarithmic) projection of f onto F as

PYf = exp <— argmin || — (— log f)||%z(,,)> , for —logf € [2(v)
peF

@ Since V;* = —log ¢} this corresponds to learning associated value
functions (more stable numerically)

@ A practical implementation replaces v with a Monte Carlo
approximation "

o Define approximate (F, v)-projection as

UNg _ . o 2
P f—exp< arg?elfF‘HS@ ( |°gf)||1_2(u’\’)>
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Approximate dynamic programming

@ To use output of y-twisted SMC to learn optimal ¢*
o Define

N
0 NZ5X°’ I/ZL/)7 = Z (Xt_ n), tE[l:T],

t—1 7't

which are consistent approximations of (Vf’)te[o 7]
o Given function class F, C [2(1}"), denote approximate
(Ft,yt )-projection by PZP N
@ Approximate backward recursion defining ¢* = (¢7):cpo: 7] by
o1 =Pyhey,
e =PI Q derr, te[T—1:0]

@ This is the approximate dynamic programming (ADP) algorithm
for finite horizon control problems (Bertsekas and Tsitsiklis, 1996)
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Policy refinement

@ Construct iterative algorithm: Controlled SMC

o Initialization: set 1(®) as constant one functions
o For iterations j € [0: [ —1]:

o run p(D-twisted SMC; .
o perform ADP with SMC output to obtain policy HU+1);
o construct refined policy (1) = () . HU+1),

o At iteration i = I: run ¢))-twisted SMC
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Controlled SMC
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Figure: llustration on logistic regression example.
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Approximate dynamic programming

@ We obtain error bounds like
T
BN — 6illaey < D Claaaed™, te[0:T]
s=t

where C;{’s are stability constants of Bellman operators and e}
are errors of approximate projections

o As N — o, one expects ¢ to converge to ¢ = (d;t)te[oﬂ, defined
by the idealized ADP algorithm

o7 = PYGY,
d;t:Pﬁl’Q;/’J)tH, te[T—-1:0],

where P is the exact (F¢, v¥)-projection

@ We establish a LLN and CLT in the case where (F;).cjo.7] are given
by a linear basis functions
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Policy refinement

@ Residuals of logarithmic projections in ADP
5? = log Qgt - (Iog G;p — log M;ﬁ-l(&tﬁ»l))
o Related to twisted potentials of refined policy ¢ - ¢ via
log G;p-& = !

o If we twist Qd’“i’ further by a policy € W, logarithmic projections in
ADP are

—log(y = arg min [l — (¥ — log MET (Ces1))l oy,

where (V;p-é,N)tE[O:T] are defined using output of (¢ - $)-twisted SMC
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Policy refinement

@ Beneficial to have an iterative scheme to construct more refined

policies

o Allows repeated least squares fitting of residuals — in the spirit of

L?-boosting methods

o Fr = {o(x) = x] Aexe + X bt + c¢ : (Ar, b, ) € Sq x RY x R}
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Figure: Coefficients estimated at each iteration of controlled SMC.
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lterated ADP

@ Want to understand the behaviour of policy () as | — oo

@ Equipped V with a metric p

o Write iterating ADP as iterated random function FJ}(:)) = ¢ - ¢
where ¢ is ADP approximation with N particles

o Iterating FV defines a Markov chain (¢("));c on W

@ Under regularity conditions, it converges to a unique invariant
distribution 7

@ Write iterating ADP with exact projections as F(1)) = 1) - ¢, where ¢
is idealized ADP approximation

o If we assume additionally that
p(F (). F(¥) < Op(N71/2)
for all ¢ € W then
Ex [p(v, )] < O(N™Y?)

where ¢* is a fixed point of F
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lterated ADP
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Figure: lllustrating invariant distribution of coefficients.
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Log-Gaussian Cox point process

o Example from Mgiller et al. (1998)

@ Dataset: 126 Scots pine saplings in a natural forest in Finland

0 0.1 02 03 04 05 06 07 08 09 1

Figure: Locations of 126 Scots pine saplings in square plot of 10 x 10 m?.
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Log-Gaussian Cox point process

@ Discretize into a 30 x 30 regular grid, so d = 900 here
@ Posterior distribution

n(dx) = N(x; po, Xo) H exp (Xmym — aexp(xm)) Z 1
me[1:30]2

@ Geometric path: 7:(dx) = N (x; po, Zo)l(x, y) Z; 2,
O=X<---< A7 =1

@ Set = N(uo, Xo) and M, as unadjusted Langevin algorithm (ULA)
targeting n;

@ Function classes

Fe = {‘P(Xt—laxt) = XtTAtXt + Xtht + ¢ — ()\t - )\t—l) |0g£(xt—1a)’)
: A diagonal, b, e R, ¢, e R}, te[l:T]
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Log-Gaussian Cox point process

@ Parameterization provides good approximation of optimal policy
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Figure:

Effective sample size (left) and normalizing constant estimation

(right) when performing inference on the Scots pine dataset.
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Log-Gaussian Cox point process

@ Comparison to AIS with MALA moves

@ cSMC: N = 4096 particles, | = 3 iterations, T = 20

@ AIS uses 5 times more particles for fair comparison

@ Variance of marginal likelihood estimates are 280 times smaller
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Figure: Marginal likelihood estimates obtained by each algorithm over 100
independent repetitions.
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A model from neuroscience

@ Measurements collected from a neuroscience experiment
(Temereanca et al., 2008)

[ 500 1000 1500 2000 2500 3000

@ State space model:

p=N(0,1),
Me(xe—1,dxe) = N (xe; axe—1, 02) dx;,
Ge(xt) = B (yr; M, k(xt))
where M =30, T = 2999 and «(u) := (1 + exp(—u))~ !, for u e R
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A model from neuroscience

@ Function classes:
Ft = {(p(Xt) = atXt2 + tht + Ct . (at, btv Ct) (S R3}, t e [O . T],

@ Parameterization provides good approximation of optimal policy
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Figure: Effective sample size (left) and normalizing constant estimation
(right) when performing inference on the neuroscience model.
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A model from neuroscience

o Estimated policies capturing abrupt changes in the data

* Uncontrolled

i * Uncontrolled
7 : lteration 1 35 T eontro
. :::::::g:g * lteration 2
¢ 30, . « lteration 3

1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000

Figure: Coefficients estimated by the controlled SMC sampler at each
iteration when performing inference on the neuroscience model.
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A model from neuroscience

o (Left) Comparison to bootstrap particle filter (BPF)

o (Right) Comparison to forward filtering and backward smoother
(FFBS) for functional xo.7 — M#£(xo.T)
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Figure: Relative variance of marginal likelihood estimates (/eft) and
estimates of smoothing expectation (right).
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A model from neuroscience

@ Bayesian inference for parameters § = (v, 02) within particle
marginal Metropolis-Hastings (PMMH)

@ ¢SMC and BPF to produce unbiased estimates of marginal likelihood
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Figure: Posterior density estimates based on 100,000 samples.
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A model from neuroscience

o Autocorrelation function (ACF) of each PMMH chain

@ ESS improvement roughly 10 times for parameter o and 5 times for
parameter g2
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Figure: Autocorrelation functions of two PMMH chains.
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