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Feynman-Kac path measure

Consider a non-homogenous Markov chain (Xt)t∈[0:T ] on (X,X )
with law

Q(dx0:T ) = µ(dx0)
T
∏

t=1

Mt(xt−1, dxt)

Given positive bounded potential functions (Gt)t∈[0:T ], define
Feynman-Kac path measure

P(dx0:T ) = G0(x0)
T
∏

t=1

Gt(xt−1, xt)Q(dx0:T )Z
−1

where Z := EQ

[

G0(X0)
∏T

t=1 Gt(Xt−1,Xt)
]

The quantities
{

µ, (Mt)t∈[1:T ], (Gt)t∈[0:T ]

}

depend on the specific
application

Applications of interest: static models and state space models
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Sequential Monte Carlo methods

SMC methods simulate an interacting particle system of size
N ∈ N

At time t = 0 and particle n ∈ [1 : N ]
sample X

n
0 ∼ µ;

sample ancestor index A
n
0 ∼ R

(

G0(X
1
0 ), . . . ,G0(X

N
0 )

)

For time t ∈ [1 : T ] and particle n ∈ [1 : N ]

sample X
n
t ∼ Mt(X

A
n
t−1

t−1
, ·);

sample ancestor index A
n
t ∼ R

(

Gt(X
A
1
t−1

t−1
,X 1

t ), . . . ,Gt(X
A
N
t−1

t−1
,XN

t )

)
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Sequential Monte Carlo methods

Particle approximation of P

PN =
1

N

N
∑

n=1

δXn
0:T

where X n
0:T is obtained by tracing ancestral lineage of particle X n

T

Unbiased estimator of Z

ZN =

{

1

N

N
∑

n=1

G0(X
n
0 )

}

T
∏

t=1

{

1

N

N
∑

n=1

Gt(X
A
n

t−1
t−1 ,X n

t )

}

Convergence properties of PN and ZN as N → ∞ are now
well-understood

However quality of approximation can be inadequate for practical
choices of N

Performance crucially depends on discrepancy between P and Q
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Twisted path measures

Consider change of measure prescribed by positive and bounded
functions ψ = (ψt)t∈[0:T ]

Refer to ψ as an admissible policy and denote set of all
admissible policies as Ψ

Given a policy ψ ∈ Ψ, define ψ-twisted path measure of Q as

Qψ(dx0:T ) = µψ(dx0)
T
∏

t=1

Mψ
t (xt−1, dxt)

where

µψ(dx0) :=
µ(dx0)ψ0(x0)

µ(ψ0)
, Mψ

t (xt−1, dxt) :=
Mt(xt−1, dxt)ψt(xt−1, xt)

Mt(ψt)(xt−1)
,

for t ∈ [1 : T ]
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Twisted path measures

Given ψ ∈ Ψ, we have

P(dx0:T ) = Gψ0 (x0)
T
∏

t=1

Gψt (xt−1, xt)Q
ψ(dx0:T )Z

−1

where

Gψ0 (x0) :=
µ(ψ0)G0(x0)M1(ψ1)(x0)

ψ0(x0)
,

Gψt (xt−1, xt) :=
Gt(xt−1, xt)Mt+1(ψt+1)(xt )

ψt(xt−1, xt)
, t ∈ [1 : T − 1],

Gψ
T
(xT−1, xT ) :=

GT (xT−1, xT )

ψT (xT−1, xT )
,

are the twisted potentials associated with Qψ

Note Z = EQψ

[

Gψ0 (X0)
∏T

t=1 G
ψ
t (Xt−1,Xt)

]

by construction
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Twisted SMC methods

Assume policy ψ ∈ Ψ is such that:
sampling µψ and (Mψ

t )t∈[1:T ] feasible

evaluating (Gψt )t∈[0:T ] tractable

Construct ψ-twisted SMC method as standard SMC applied to
{

µψ, (Mψ
t )t∈[1:T ], (G

ψ
t )t∈[0:T ]

}

Particle approximation of P and Z

Pψ,N =
1

N

N
∑

n=1

δXn

0:T
, Zψ,N =

{

1

N

N
∑

n=1

Gψ0 (X n
0 )

}

T
∏

t=1

{

1

N

N
∑

n=1

Gψt (X
A
n

t−1
t−1 ,X n

t )

}
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Optimal policies

A policy with constant functions recover standard SMC method

Consider an iterative scheme to refine policies

Given current policy ψ ∈ Ψ, twisting Qψ further with policy φ ∈ Ψ
results in a twisted path measure (Qψ)φ

Note that (Qψ)φ = Qψ·φ where ψ · φ = (ψt · φt)t∈[0:T ]

Choice of φ is guided by the following optimality result
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Optimal policies

Proposition

For any ψ ∈ Ψ, under the policy φ∗ = (φ∗t )t∈[0:T ] defined recursively as

φ∗T (xT−1, xT ) = Gψ
T
(xT−1, xT ),

φ∗t (xt−1, xt) = Gψt (xt−1, xt)M
ψ
t+1(φ

∗

t+1)(xt ), t ∈ [T − 1 : 1],

φ∗0(x0) = Gψ0 (x0)M
ψ
1 (φ

∗

1)(x0),

the refined policy ψ∗ := ψ · φ∗ satisfies:
(i) P = Qψ

∗

;
(ii) Zψ

∗,N = Z almost surely for any N ∈ N.
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Optimal policies

Refer to φ∗ as the optimal policy w.r.t. Qψ

The refined policy ψ∗ = ψ · φ∗ is the optimal policy w.r.t. Q

ψ∗-twisted potentials

Gψ
∗

0 (x0) = Z , Gψ
∗

t (xt−1, xt) = 1, t ∈ [1 : T ]

Under ψ∗-twisted SMC method

Zψ
∗,N

t =

{

1

N

N
∑

n=1

Gψ
∗

0 (X n
0 )

}

t
∏

k=1

{

1

N

N
∑

n=1

Gψ
∗

k
(X

A
n

t−1

k−1 ,X n
k )

}

= Z

for all t ∈ [0 : T ]
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Optimal policies

The connection to Kullback-Leibler optimal control is given by

Proposition

The functions V ∗
t := − logφ∗t , t ∈ [0 : T ] are the optimal value functions

of the KL control problem

inf
φ∈Φ

KL
(

(Qψ)φ|P
)

where Φ := {φ ∈ Ψ : KL((Qψ)φ|P) < ∞}.

The following is a characterization of φ∗ in a specific setting

Proposition

For any policy ψ ∈ Ψ such that the corresponding twisted potentials
(Gψt )t∈[0:T ] and transition densities of (Mψ

t )t∈[1:T ] are log-concave on
their domain of definition, then the optimal policy φ∗ = (φ∗t )t∈[0:T ] w.r.t.
Qψ is a sequence of log-concave functions.
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Dynamic programming recursions

Simplify notation by defining the Bellman operators (Qψ
t )t∈[0:T−1]

Rewrite the backward recursion defining φ∗ = (φ∗t )t∈[0:T ] as

φ∗T = Gψ
T
,

φ∗t = Qψ
t φ

∗

t+1, t ∈ [T − 1 : 0]

where

Qψ
t (ϕ)(x , y) = Gψt (x , y)Mψ

t+1(ϕ)(y)

It will be convenient to view Qψ
t : L2(νψ

t+1) → L2(νψt ) where

νψ0 := µψ , νψt (dx , dy) := ηψ
t−1(dx)M

ψ
t (x , dy)

Need to approximate this recursion in practice

Jeremy Heng Controlled SMC 12 / 31



Approximate projections

Given probability measure ν and function class F ⊂ L2(ν),

Define (logarithmic) projection of f onto F as

Pν f = exp

(

− arg min
ϕ∈F

∥ϕ− (− log f )∥2
L2(ν)

)

, for − log f ∈ L2(ν)

Since V ∗
t = − logφ∗t this corresponds to learning associated value

functions (more stable numerically)

A practical implementation replaces ν with a Monte Carlo
approximation νN

Define approximate (F, ν)-projection as

Pν,N f = exp

(

− arg min
ϕ∈F

∥ϕ− (− log f )∥2
L2(νN )

)
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Approximate dynamic programming

To use output of ψ-twisted SMC to learn optimal φ∗

Define

νψ,N0 =
1

N

N
∑

n=1

δXn
0
, νψ,Nt =

1

N

N
∑

n=1

δ(
X

An
t−1

t−1 ,Xn
t

), t ∈ [1 : T ],

which are consistent approximations of (νψt )t∈[0:T ]

Given function class Ft ⊂ L2(νψt ), denote approximate
(Ft , ν

ψ
t )-projection by Pψ,Nt

Approximate backward recursion defining φ∗ = (φ∗t )t∈[0:T ] by

φ̂T = Pψ,N
T

Gψ
T
,

φ̂t = Pψ,Nt Qψ
t φ̂t+1, t ∈ [T − 1 : 0]

This is the approximate dynamic programming (ADP) algorithm
for finite horizon control problems (Bertsekas and Tsitsiklis, 1996)
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Policy refinement

Construct iterative algorithm: Controlled SMC

Initialization: set ψ(0) as constant one functions
For iterations i ∈ [0 : I − 1]:

run ψ(i)-twisted SMC;
perform ADP with SMC output to obtain policy φ̂(i+1);
construct refined policy ψ(i+1) = ψ(i)

· φ̂(i+1).

At iteration i = I : run ψ(I )-twisted SMC
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Controlled SMC
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Figure: Illustration on logistic regression example.

Jeremy Heng Controlled SMC 16 / 31



Approximate dynamic programming

We obtain error bounds like

Eψ,N∥φ̂t − φ∗t ∥L2(νψt ) ≤
T
∑

s=t

Cψ
t−1,s−1e

ψ,N
s , t ∈ [0 : T ]

where Cψt,s are stability constants of Bellman operators and eψ,Nt

are errors of approximate projections

As N → ∞, one expects φ̂ to converge to φ̃ = (φ̃t )t∈[0:T ], defined
by the idealized ADP algorithm

φ̃T = Pψ
T
Gψ
T
,

φ̂t = Pψt Q
ψ
t φ̃t+1, t ∈ [T − 1 : 0],

where Pψt is the exact (Ft , ν
ψ
t )-projection

We establish a LLN and CLT in the case where (Ft)t∈[0:T ] are given
by a linear basis functions
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Policy refinement

Residuals of logarithmic projections in ADP

εψt := log φ̂t −
(

logGψt − logMψ
t+1(φ̂t+1)

)

Related to twisted potentials of refined policy ψ · φ̂ via

logGψ·φ̂t = −εψt

If we twist Qψ·φ̂ further by a policy ζ̂ ∈ Ψ, logarithmic projections in
ADP are

− log ζ̂t := arg min
ϕ∈Ft

∥ϕ− (εψt − logMψ·φ̂
t+1 (ζ̂t+1))∥

L2(νψ·φ̂,N
t )

where (νψ·φ̂,Nt )t∈[0:T ] are defined using output of (ψ · φ̂)-twisted SMC
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Policy refinement

Beneficial to have an iterative scheme to construct more refined
policies

Allows repeated least squares fitting of residuals – in the spirit of
L2-boosting methods

Ft =
{

ϕ(xt ) = xTt Atxt + xTt bt + ct : (At , bt , ct) ∈ Sd × Rd × R
}
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Figure: Coefficients estimated at each iteration of controlled SMC.
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Iterated ADP

Want to understand the behaviour of policy ψ(I ) as I → ∞

Equipped Ψ with a metric ρ

Write iterating ADP as iterated random function FN
U
(ψ) = ψ · φ̂,

where φ̂ is ADP approximation with N particles

Iterating FN defines a Markov chain (ψ(I ))I∈N on Ψ

Under regularity conditions, it converges to a unique invariant
distribution π

Write iterating ADP with exact projections as F (ψ) = ψ · φ̃, where φ̃
is idealized ADP approximation

If we assume additionally that

ρ(FN
U (ψ),F (ψ) ≤ OP(N

−1/2)

for all ψ ∈ Ψ then

Eπ [ρ(ψ,ϕ
∗)] ≤ O(N−1/2)

where ϕ∗ is a fixed point of F
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Iterated ADP

14.5 15 15.5 16 16.5 17 17.5 18
-1.5

-1

-0.5

0

0.5

1

1.5

14.5 15 15.5 16 16.5 17 17.5 18
-3

-2

-1

0

1

2

3

4
10

-3

5 6 7 8 9 10 11 12 13 14 15
-18

-16

-14

-12

-10

-8

-6

146 148 150 152 154 156 158
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Figure: Illustrating invariant distribution of coefficients.
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Log-Gaussian Cox point process

Example from Møller et al. (1998)

Dataset: 126 Scots pine saplings in a natural forest in Finland
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Figure: Locations of 126 Scots pine saplings in square plot of 10 × 10m2.
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Log-Gaussian Cox point process

Discretize into a 30 × 30 regular grid, so d = 900 here

Posterior distribution

η(dx) = N (x ;µ0,Σ0)
∏

m∈[1:30]2

exp (xmym − a exp(xm))Z
−1

Geometric path: ηt(dx) = N (x ;µ0,Σ0)ℓ(x , y)λtZ−1
t ,

0 = λ0 < · · · < λT = 1

Set µ = N (µ0,Σ0) and Mt as unadjusted Langevin algorithm (ULA)
targeting ηt

Function classes

Ft =
{

ϕ(xt−1, xt) = xTt Atxt + xTt bt + ct − (λt − λt−1) log ℓ(xt−1, y)

: At diagonal, bt ∈ Rd , ct ∈ R
}

, t ∈ [1 : T ]
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Log-Gaussian Cox point process

Parameterization provides good approximation of optimal policy
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Figure: Effective sample size (left) and normalizing constant estimation
(right) when performing inference on the Scots pine dataset.
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Log-Gaussian Cox point process

Comparison to AIS with MALA moves

cSMC: N = 4096 particles, I = 3 iterations, T = 20

AIS uses 5 times more particles for fair comparison

Variance of marginal likelihood estimates are 280 times smaller
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Figure: Marginal likelihood estimates obtained by each algorithm over 100
independent repetitions.
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A model from neuroscience

Measurements collected from a neuroscience experiment
(Temereanca et al., 2008)
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State space model:

µ = N (0, 1),

Mt(xt−1, dxt) = N
(

xt ;αxt−1,σ
2
)

dxt ,

Gt(xt ) = B (yt ;M ,κ(xt)) ,

where M = 30, T = 2999 and κ(u) := (1 + exp(−u))−1, for u ∈ R
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A model from neuroscience

Function classes:
Ft =

{

ϕ(xt ) = atx
2
t + btxt + ct : (at , bt , ct) ∈ R3

}

, t ∈ [0 : T ],

Parameterization provides good approximation of optimal policy
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Figure: Effective sample size (left) and normalizing constant estimation
(right) when performing inference on the neuroscience model.
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A model from neuroscience

Estimated policies capturing abrupt changes in the data
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Figure: Coefficients estimated by the controlled SMC sampler at each
iteration when performing inference on the neuroscience model.
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A model from neuroscience

(Left) Comparison to bootstrap particle filter (BPF)

(Right) Comparison to forward filtering and backward smoother
(FFBS) for functional x0:T )→ Mκ(x0:T )
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Figure: Relative variance of marginal likelihood estimates (left) and
estimates of smoothing expectation (right).
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A model from neuroscience

Bayesian inference for parameters θ = (α,σ2) within particle
marginal Metropolis-Hastings (PMMH)

cSMC and BPF to produce unbiased estimates of marginal likelihood
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Figure: Posterior density estimates based on 100, 000 samples.
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A model from neuroscience

Autocorrelation function (ACF) of each PMMH chain

ESS improvement roughly 10 times for parameter α and 5 times for
parameter σ2
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Figure: Autocorrelation functions of two PMMH chains.
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