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Inverse Problems

Data Parameter

y = G ( u ) + e

forward model (PDE) observation/model errors

y ∈ RM

u ∈ E
G : E → RM

Data y may be limited in number, noisy, and indirect.
Parameter u often a function, discretized.
Needs to be approximated.
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Bayesian inversion

Goal of Bayesian inference: given observed data y , find the
posterior distribution

P(du|y) =
P(y |u)P0(du)∫
E P(y |u)P0(du)

,

and estimate quantities of interest, such as, for g : E → R,
expected value,

∫
E g(u)P(du|y);

variance,
∫

E g(u)2P(du|y)− (
∫

E g(u)P(du|y))2;
probability of exceeding some value

∫
{u∈E ;g(u)>R} P(du|y).

There exists a connection with a classical inverse problems:
identify most probable value, supu∈E limδ→0

P(Bδ(u)|y)
P(Bδ(v)|y) .
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Orientation

Aim: Approximate expectations with respect to a probability
distribution η∞, which needs to be approximated by some ηL,
and can only be evaluated up to a normalizing constant.
Solution: The multilevel Monte Carlo (MLMC) framework is
extended to Sequential Monte Carlo (SMC) samplers, yielding
the MLSMC sampler for Bayesian inference problems (and
several other MC methods).

MLMC methods reduce cost to error= O(ε), can be used
in the case that ηL can be sampled from directly [G08].
Here it is assumed that ηL cannot be sampled from directly,
but can be evaluated up to a normalizing constant (e.g.
Bayesian inference problems).
SMC samplers are a general class of algorithms which are
effective for sampling from such distributions
[DDJ06,C02].
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Example: expectation for SDE [G08]

Estimation of expectation of solution of intractable stochastic
differential equation (SDE).

dX = f (X )dt + σ(X )dW , X0 = x0 .

Aim: estimate E(g(XT )).
We need to
(1) Approximate, e.g. by Euler-Maruyama method with

resolution h:

Xn+1 = Xn + hf (Xn) +
√

hσ(Xn)ξn, ξn ∼ N(0,1).

(2) Sample {X (i)
NT
}Ni=1, NT = T/h.
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Single level Monte Carlo

Aim: Approximate η∞(g) := Eη∞(g) for g : E → R.

Monte Carlo approach
Discretize the space⇒ approximate distribution ηL.

Sample U(i)
L ∼ ηL i.i.d., and approximate

ηL(g) := EηL(g) ≈ Ŷ NL
L :=

1
NL

NL∑
i=1

g(U(i)
L ).

Mean square error (MSE) E{Ŷ NL
L − Eη∞ [g(U)]}2 splits into

E{Ŷ NL
L − EηL [g(U)]}2︸ ︷︷ ︸
variance=O(N−1

L )

+{EηL [g(U)]− Eη∞ [g(U)]︸ ︷︷ ︸
bias

}2

Cost to achieve MSE= O(ε2) is Cost(U(i)
L )× ε−2.
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Multilevel Monte Carlo I

Introduce a hierarchy of discretization levels {ηl}Ll=1 and define
Yl = {Eηl [g(U)]− Eηl−1 [g(U)]}, with η−1 := 0.
Observe the telescopic sum

EηL [g(U)] =
L∑

l=0

Yl .

Each term can be unbiasedly approximated by

Y Nl
l =

1
Nl

Nl∑
i=1

{g(U(i)
l )− g(U(i)

l−1)}

where g(U(i)
−1) := 0.
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Multilevel Monte Carlo II

Multilevel Monte Carlo approach:
Sample i.i.d. (Ul ,Ul−1)(i) ∼ η̄l , such that∫
η̄ldul−1,l = ηl,l−1, and approximate

ηL(g) ≈ ŶL,Multi :=
L∑

l=0

Y Nl
l .

Mean square error (MSE) given by

E{ŶL,Multi − Eη∞ [g(U)]}2 =

E{ŶL,Multi − EηL [g(U)]}2︸ ︷︷ ︸
variance=

∑L
l=0 Vl/Nl

+{EηL [g(U)]− Eη∞ [g(U)]︸ ︷︷ ︸
bias

}2 .

Fix bias by choosing L. Minimize cost C =
∑L

l=0 ClNl as a
function of {Nl}Ll=0 for fixed variance⇒ Nl ∝

√
Vl/Cl .
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Illustration of pairwise coupling

Pairwise coupling of trajectories of an SDE:

X 1
n+1 = X 1

n +hf (X 1
n )+
√

hσ(X 1
n )ξn, ξn ∼ N(0,1), n = 0, . . . ,N1

X 0
n+1 = X 0

n +(2h)f (X 0
n )+
√

2hσ(X 0
n )(ξ2n+ξ2n+1), n = 0, . . . , (N1−1)/2.
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i=0 ξn, W 0
n = W 1

2n.

0.0 0.2 0.4 0.6 0.8 1.0
t

1.0

1.1

1.2

1.3

1.4

1.5

1.6

X

{
0
}

t

X

{
1
}

t

(b) Stochastic process driven by
Wiener process.
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Multilevel vs. Single level

Assume hl = 2−l and there are α, and β > ζ such that
(i) weak error |E[g(Ul)− g(U)]| = O(hαl ).

(ii) strong error E|g(Ul)− g(U)|2 = O(hβl )⇒ Vl = O(hβl ),
(iii) computational cost for a realization of g(Ul)− g(Ul−1),

Cl ∝ h−ζl .
Both cases require hαL = O(ε)⇒ L ∝ | log ε|.

Single level cost C = O(ε−ζ/α−2) : cost per sample is
CL ∝ ε−ζ/α, and fixed V ∝ ε2 ⇒ NL ∝ ε−2.
Multilevel cost CML = O(ε−2) : Nl ∝ ε−2KLh(β+ζ)/2

l , so
V ∝ ε2 and C ∝ ε−2K 2

L for KL =
∑L

l=0 h(β−ζ)/2
l = O(1)

[G08] – cost of simulating a scalar random variable.
Example: Milstein solution of SDE

C = O(ε−3) vs. CML = O(ε−2).
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Inverse Problems

Data Parameter

y = G ( u ) + e

forward model (PDE) observation/model errors

y ∈ RM

u ∈ E
G : E → RM

Data y may be limited in number, noisy, and indirect.
Parameter u often a function, discretized.
Needs to be approximated.
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Example forward problem

Let V := H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) =: V ∗, Ω ⊂ Rd with ∂Ω
convex, and f ∈ V ∗. Consider

−∇ · (û∇p) = f , on Ω

p = 0, on ∂Ω,

where

û(x) = ū(x) +
K∑

k=1

ukσk Φk (x) .

Define u = {uk}Kk=1 ∈ E :=
∏K

k=1[−1,1], with uk ∼ U[−1,1]
i.i.d. This determines the prior distribution for u. Assume
ū,Φk ∈ C∞, and ‖Φk‖∞ = 1 for all k , and require

inf
x

û(x) ≥ inf
x

ū(x)−
K∑

k=1

σk ≥ u∗ > 0.
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Bayesian inverse problem

Let p(·; u) denote the weak solution for parameter value u, and
define

G(p) = [g1(p), · · · ,gM(p)]> ,

where gm ∈ V ∗ for m = 1, . . . ,M.

DATA : y = G(p(·; u)) + e, e ∼ N(0, Γ), e ⊥ u.

The unnormalized density of u|y over u ∈ E is given by

κ(u) = e−Φ[G(p(·;u))] ; Φ(G) = 1
2 |G − y |2Γ .

TARGET : η(u) =
κ(u)

Z
, Z =

∫
E
κ(u)du.
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SMC sampler algorithm

Distributions ηl dictated by an accuracy parameter hl (here
FEM mesh diameter)∞ > h0 > h1 · · · > h∞ = 0. Approximate
EηL [g(U)] = ηL(g) =

∫
E g(u)ηL(u)du.

Idea: interlace sequential importance resampling (selection)
along the hierarchy, and mutation by MCMC kernels.

Initialize i.i.d. U i
0 ∼ η0, i = 1, . . . ,N. For l ∈ {0, . . . ,L− 1}:

Resample {Û i
l }Ni=1 according to the weights {w i

l }Ni=1,

w i
l = Gi

l/
∑N

j=1 Gj
l , Gi

l = (κl+1/κl)(U i
l ).

Draw U i
l+1 ∼ Ml+1(Û i

l , ·), where Ml+1 is an MCMC kernel
such that ηl+1Ml+1 = ηl+1.

For g : E → R, l ∈ {0, . . . ,L}, we have the following estimators

Eηl [g(U)] ≈ ηN
l (g) :=

1
N

N∑
i=1

g(U i
l ) .
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MLSMC sampler

Notice

EηL [g(U)] = Eη0 [g(U)] +
L∑

l=1

{
Eηl [g(U)]− Eηl−1 [g(U)]

}

= Eη0 [g(U)] +
L∑

l=1

Eηl−1

[(κl(U)Zl−1

κl−1(U)Zl
− 1
)

g(U)
]
. †

Idea: Approximate † using SMC sample hierarchy.

Key: Subsample (U1:N0
0 , . . . ,U1:NL−1

L−1 ) as in single level SMC, but
with +∞ > N0 ≥ N1 · · · ≥ NL−1 ≥ 1 appropriately chosen.
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MLSMC estimator

The MLSMC consistent estimator of ηL(g) is given by

Ŷ := ηN0
0 (g) +

L∑
l=1

{ηNl−1
l−1 (gGl−1)

η
Nl−1
l−1 (Gl−1)

− ηNl−1
l−1 (g)

}
.

i) the L + 1 terms above are not unbiased estimates of
Eηl [g(U)]− Eηl−1 [g(U)], so decompose MSE as:

E
[
{Ŷ − Eη∞ [g(U)]}2

]
≤

2E
[
{Ŷ − EηL [g(U)]}2

]
+ 2 {EηL [g(U)]− Eη∞ [g(U)]}2 .

ii) the same L + 1 estimates are not independent, so a more
complex error analysis will be required to characterize
E[{Ŷ − EηL [g(U)]}2].
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Assumptions

(A1) There exist 0 < C < C < +∞ such that

sup
1≤l≤L

sup
u∈E

Gl(u) ≤ C ,

inf
1≤l≤L

inf
u∈E

Gl(u) ≥ C .

(A2) There exist a ρ ∈ (0,1) such that for any 1 ≤ p ≤ L− 1,
(u, v) ∈ E2, A ∈ σ(E),∫

A
Mp(u,du′) ≥ ρ

∫
A

Mp(v ,du′).

(A3) There is a β > 0 such that

Vl := ‖Zl−1
Zl

Gl−1 − 1‖2∞ = O(hβl ) .
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Main result

Theorem (BJLTZ16 – Stoch. Proc. App.)
Assume (A1-3). For any g : E → R bounded

E
[
{Ŷ − EηL [g(U)]}2

]
=

V
2

.
1

N0
+

L∑
l=1

(
Vl

Nl
+
(Vl

Nl

)1/2 L∑
q=l+1

V 1/2
q

Nq

)
.

In particular, for β > ζ, L and {Nl}Ll=0 can be chosen such that
MSE= O(ε2) for computational cost= O(ε−2), the optimal case.
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Runtime cost as a function of error
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(IS) MLSMC sampler for normalizing constants

In case g = 1, the original estimator does not make sense.

Two unbiased estimators proposed which provide the optimal
rate with a logarithmic penalty on the cost: MSE O(ε2) for cost
O(| log ε|ε−2) [DJLZ16 – Trans. Mod. Comp. Sim.] Here one can
also construct estimators of Rhee&Glynn type.
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(IS) MLSMC samplers with DILI mutations

Posterior over function-space, levels include refinement in
parameter and model η̂l(u0:l).
Covariance-based LIS (cLIS) introduced and incorporated
in DILI proposals [CLM16, BJLMZ17] – substantial
reduction in cost.
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(CA) ML particle filter (MLPF) for SDE

Filtering involves a sequence of Bayesian inversions,
separated by propagation in time (in this case through an
SDE).
Let η̂0,m, . . . , η̂L,m, . . . , η̂∞,m denote the time m filtering
distribution at a hierarchy of levels (time discretization).
Coupled traditional SMC algorithms (particle filters) can be
used for each level.
Mutation M` is now coupled propagation of a pair of initial
conditions through an SDE discretized at two successive
mesh-refinements, for ` = 0, . . . ,L.
Selection is performed by novel pairwise coupled
resampling which preserves marginals.
MLMC results carry over with somewhat weaker rate
β → β/2 [JKLZ15].
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(CA) MLPF numerical experiments
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(CA) ML ensemble Kalman filter (MLEnKF) for SDE

EnKF uses sample covariance from an ensemble of
particles to approximate a linear Gaussian Bayesian
update, given by an affine transformation of particles.
Multilevel approximation of the covariance improves cost
for MSE O(ε2) [HLT16].

Best theoretical bound (at step n): O(| log ε|2nε−2).
Numerically (uniformly in n): O(ε−2).
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(AC) Parameter estimation for SDE with pMCMC

Aim: estimate E[ϕ(θ)|y ], where y is a finite set of partial
observations of the SDE X θ

t on [0,T ], parameterized by θ.
particle MCMC: Iterate

propose θ′ ∼ q(θ, θ′),
simulate {X θ′,i}M

i=1 ≈ π(X |θ′, y) with particle filter,
compute non-negative and unbiased estimator
pM(y |θ′) =

∏n
p=1( 1

M

∑M
i=1 gp(X θ′,i

p )),
accept/reject according to

1 ∧ pM(y |θ′)π(θ′)q(θ′, θ)

pM(y |θ)π(θ)q(θ, θ′)
.
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MLMC version [JKLZ16]:
Construct approximate coupling π̃l,l−1(θ,X l ,X l−1): usual
coupled forward kernel, and coupled selection function
Gp,θ(X l ,X l−1) = max{gp,θ(X l ),gp,θ(X l−1)}.
Let Hl (θ,X l ,X l−1) =

∏n
p=1 gp,θ(X l )/Gp,θ(X l ,X l−1). Then

Eπl [ϕ(θ)]− Eπl−1 [ϕ(θ)] =
Eπ̃l,l−1 [ϕ(θ)Hl (θ,X l ,X l−1)]

Eπ̃l,l−1 [Hl (θ,X l ,X l−1)]
− Eπ̃l,l−1 [ϕ(θl−1)Hl−1(θ,X l ,X l−1)]

Eπ̃l,l−1 [Hl−1(θ,X l ,X l−1)]
.

Optimal results hold with same rate as forward.
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(AC) Multi-index Markov chain Monte Carlo (MIMCMC)

If spatio-temporal approximation dimension d > 1, then
MIMC is preferable to MLMC [HNT15]. α ∈ Nd

∆iEα(ϕ(u)) = Eα(ϕ(u))− Eα−ei (ϕ(u)), ∆ = ∆d · · ·∆1,

E(ϕ(u)) =
∑
α

∆Eα(ϕ(u)) ≈
∑
α∈I

∆Eα(ϕ(u))

Approximate coupling can be applied to the 2d

probability measures in each summand.
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Optimal results hold for appropriate regularity [JKLZ17]
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Summary

MLSMC sampler can perform as well as MLMC.
For our example β > ζ. If β ≤ ζ, cost is somewhat higher,
analogous to standard MLMC.
If ζ > 2α then the optimal cost is ε−ζ/α, the cost of a single
simulation at the finest level.
New importance sampling: MLSMC with DILI mutations.
Coupled algorithms: MLPF strong error is effectively
reduced by coupled resampling β → β/2.
Coupled algorithms: MLEnKF has a spurious
n-dependent logarithmic penalty | log ε|2n on cost.
New approximate couplings: ML PMCMC for SDE
parameter estimation preserves strong error β.
New approximate couplings: MIMCMC can perform as
well as MIMC; also for d = 1 new MLMCMC.
We are keen to do more applications (on HPC) !
Looking for students/postdocs with similar interests.
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