Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary

Multilevel sequential Monte Carlo methods

Kody Law

SMC2017, Uppsala, Sweden

September 2, 2017

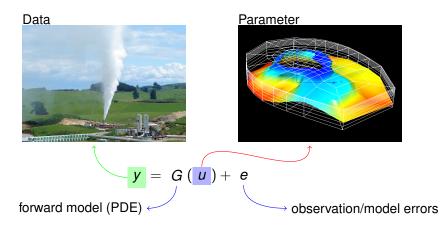
(日)

Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Outline						

- 2 Multilevel Monte Carlo sampling
- 3 Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy

Introduction	MLMC	BIP	SMC	MLSMC	Other 000000000	Summary
Outline						

- Multilevel Monte Carlo sampling
- Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy
- 🕖 Summary



 $y \in \mathbb{R}^M$ Data y may be limited in number, noisy, and indirect. $u \in E$ Parameter u often a function, discretized. $G: E \to \mathbb{R}^M$ Needs to be **approximated**.

Goal of Bayesian inference: given observed data y, find the posterior distribution

$$\mathbb{P}(du|y) = rac{\mathbb{P}(y|u)\mathbb{P}_0(du)}{\int_{E}\mathbb{P}(y|u)\mathbb{P}_0(du)},$$

and estimate *quantities of interest*, such as, for $g: E \rightarrow \mathbb{R}$,

- expected value, $\int_E g(u)\mathbb{P}(du|y)$;
- variance, $\int_E g(u)^2 \mathbb{P}(du|y) (\int_E g(u)\mathbb{P}(du|y))^2$;
- probability of exceeding some value $\int_{\{u \in E; g(u) > R\}} \mathbb{P}(du|y)$.

There exists a connection with a classical inverse problems: identify most probable value, $\sup_{u \in E} \lim_{\delta \to 0} \frac{\mathbb{P}(B_{\delta}(u)|y)}{\mathbb{P}(B_{\delta}(v)|y)}$.

Introduction	MLMC	BIP	SMC	MLSMC	Other 000000000	Summary
Orientati	on					

Aim: Approximate expectations with respect to a probability distribution η_{∞} , which needs to be approximated by some η_L , and can only be evaluated up to a normalizing constant. Solution: The multilevel Monte Carlo (MLMC) framework is extended to Sequential Monte Carlo (SMC) samplers, yielding the MLSMC sampler for Bayesian inference problems (and several other MC methods).

- MLMC methods *reduce cost to* error= O(ε), can be used in the case that η_L can be sampled from directly [G08].
- Here it is assumed that η_L cannot be sampled from directly, but can be evaluated up to a normalizing constant (e.g. Bayesian inference problems).
- SMC samplers are a general class of algorithms which are effective for sampling from such distributions [DDJ06,C02].

Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Outline						

- 2 Multilevel Monte Carlo sampling
- 3 Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy

Estimation of expectation of solution of intractable stochastic differential equation (SDE).

$$dX = f(X)dt + \sigma(X)dW, \quad X_0 = x_0.$$

- Aim: estimate $\mathbb{E}(g(X_T))$. We need to
- (1) Approximate, e.g. by Euler-Maruyama method with resolution *h*:

$$X_{n+1} = X_n + hf(X_n) + \sqrt{h}\sigma(X_n)\xi_n, \quad \xi_n \sim N(0,1).$$

(2) Sample $\{X_{N_T}^{(i)}\}_{i=1}^N, N_T = T/h.$

Aim: Approximate $\eta_\infty(g):=\mathbb{E}_{\eta_\infty}(g)$ for $g:E o\mathbb{R}.$

Monte Carlo approach

- Discretize the space \Rightarrow *approximate* distribution η_L .
- Sample $U_L^{(i)} \sim \eta_L$ i.i.d., and approximate

$$\eta_L(g) := \mathbb{E}_{\eta_L}(g) pprox \widehat{Y}_L^{N_L} := rac{1}{N_L} \sum_{i=1}^{N_L} g(U_L^{(i)}).$$

• Mean square error (MSE) $\mathbb{E}\{\widehat{Y}_{L}^{N_{L}} - \mathbb{E}_{\eta_{\infty}}[g(U)]\}^{2}$ splits into

$$\underbrace{\mathbb{E}\{\widehat{Y}_{L}^{N_{L}} - \mathbb{E}_{\eta_{L}}[g(U)]\}^{2}}_{\text{variance} = \mathcal{O}(N_{L}^{-1})} + \{\underbrace{\mathbb{E}_{\eta_{L}}[g(U)] - \mathbb{E}_{\eta_{\infty}}[g(U)]}_{\text{bias}}\}^{2}$$

• Cost to achieve MSE = $\mathcal{O}(\varepsilon^2)$ is Cost $(U_{L_0}^{(i)}) \times \varepsilon^{-2}$.

Introduce a hierarchy of discretization levels $\{\eta_l\}_{l=1}^L$ and define $Y_l = \{\mathbb{E}_{\eta_l}[g(U)] - \mathbb{E}_{\eta_{l-1}}[g(U)]\}$, with $\eta_{-1} := 0$. Observe the telescopic sum

$$\mathbb{E}_{\eta_L}[g(U)] = \sum_{l=0}^L Y_l.$$

Each term can be unbiasedly approximated by

$$Y_{l}^{N_{l}} = \frac{1}{N_{l}} \sum_{i=1}^{N_{l}} \{g(U_{l}^{(i)}) - g(U_{l-1}^{(i)})\}$$

where $g(U_{-1}^{(i)}) := 0$.

Multilevel Monte Carlo approach:

• Sample i.i.d.
$$(U_l, U_{l-1})^{(i)} \sim \overline{\eta}^l$$
, such that $\int \overline{\eta}^l du_{l-1,l} = \eta_{l,l-1}$, and approximate $\eta_L(g) \approx \widehat{Y}_{L,\text{Multi}} := \sum_{l=0}^L Y_l^{N_l}$.

Mean square error (MSE) given by

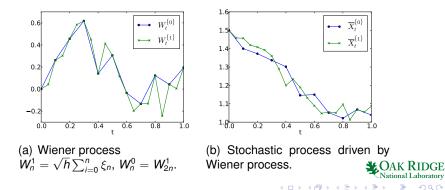
$$\begin{split} \mathbb{E}\{\widehat{Y}_{L,\mathrm{Multi}} - \mathbb{E}_{\eta_{\infty}}[g(U)]\}^2 &= \\ \underbrace{\mathbb{E}\{\widehat{Y}_{L,\mathrm{Multi}} - \mathbb{E}_{\eta_L}[g(U)]\}^2}_{\mathrm{variance} = \sum_{l=0}^{L} V_l/N_l} + \{\underbrace{\mathbb{E}_{\eta_L}[g(U)] - \mathbb{E}_{\eta_{\infty}}[g(U)]}_{\mathrm{bias}}\}^2 \ . \end{split}$$

(日)

• Fix bias by choosing *L*. Minimize cost $C = \sum_{l=0}^{L} C_l N_l$ as a function of $\{N_l\}_{l=0}^{L}$ for fixed variance $\Rightarrow N_l \propto \sqrt{V_l/C_l}$.

Pairwise coupling of trajectories of an SDE:

$$\begin{aligned} X_{n+1}^{1} &= X_{n}^{1} + hf(X_{n}^{1}) + \sqrt{h}\sigma(X_{n}^{1})\xi_{n}, \quad \xi_{n} \sim N(0,1), \quad n = 0, \dots, N_{1} \\ X_{n+1}^{0} &= X_{n}^{0} + (2h)f(X_{n}^{0}) + \sqrt{2h}\sigma(X_{n}^{0})(\xi_{2n} + \xi_{2n+1}), \quad n = 0, \dots, (N_{1} - 1)/2 \end{aligned}$$



Introduction MLMC MLSMC Other Summary Multilevel vs. Single level

Assume $h_l = 2^{-l}$ and there are α , and $\beta > \zeta$ such that

- (i) weak error $|\mathbb{E}[q(U_l) q(U)]| = \mathcal{O}(h_l^{\alpha})$.
- (ii) strong error $\mathbb{E}|g(U_l) g(U)|^2 = \mathcal{O}(h_l^\beta) \Rightarrow V_l = \mathcal{O}(h_l^\beta)$,
- (iii) computational cost for a realization of $g(U_l) g(U_{l-1})$, $C_l \propto h_l^{-\zeta}$.

Both cases require $h_{L}^{\alpha} = \mathcal{O}(\varepsilon) \Rightarrow L \propto |\log \varepsilon|$.

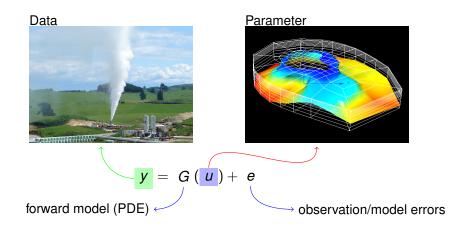
- Single level cost $C = O(e^{-\zeta/\alpha-2})$: cost per sample is $C_{I} \propto \varepsilon^{-\zeta/\alpha}$, and fixed $V \propto \varepsilon^{2} \Rightarrow N_{I} \propto \varepsilon^{-2}$.
- Multilevel cost $C_{\rm ML} = \mathcal{O}(\varepsilon^{-2})$: $N_l \propto \varepsilon^{-2} K_l h_l^{(\beta+\zeta)/2}$, so $V \propto \varepsilon^2$ and $C \propto \varepsilon^{-2} K_l^2$ for $K_L = \sum_{l=0}^L h_l^{(\beta-\zeta)/2} = \mathcal{O}(1)$ [G08] – cost of simulating a scalar random variable.
- Example: Milstein solution of SDE

$$C = \mathcal{O}(\varepsilon^{-3})$$
 vs. $C_{\mathrm{ML}} = \mathcal{O}(\varepsilon^{-2})$.

orv

Outline	Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
	Outline						

- Introduction
- 2 Multilevel Monte Carlo sampling
- 3 Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy
- 🕖 Summary



 $y \in \mathbb{R}^M$ Data y may be limited in number, noisy, and indirect. $u \in E$ Parameter u often a function, discretized. $G: E \to \mathbb{R}^M$ Needs to be **approximated**.

Let $V := H^1(\Omega) \subset L^2(\Omega) \subset H^{-1}(\Omega) =: V^*, \Omega \subset \mathbb{R}^d$ with $\partial \Omega$ convex, and $f \in V^*$. Consider

$$-\nabla \cdot (\widehat{\boldsymbol{u}} \nabla \boldsymbol{p}) = \boldsymbol{f}, \quad \text{on } \Omega$$
$$\boldsymbol{p} = \boldsymbol{0}, \quad \text{on } \partial \Omega,$$

where

$$\widehat{u}(x) = \overline{u}(x) + \sum_{k=1}^{K} u_k \sigma_k \Phi_k(x)$$
.

Define $u = \{u_k\}_{k=1}^{K} \in E := \prod_{k=1}^{K} [-1, 1]$, with $u_k \sim U[-1, 1]$ i.i.d. This determines the prior distribution for u. Assume $\bar{u}, \Phi_k \in C^{\infty}$, and $\|\Phi_k\|_{\infty} = 1$ for all k, and require

$$\inf_{x} \widehat{u}(x) \geq \inf_{x} \overline{u}(x) - \sum_{k=1}^{K} \sigma_{k} \geq u_{*} > 0.$$

Let $p(\cdot; u)$ denote the weak solution for parameter value u, and define

$$\mathcal{G}(\boldsymbol{p}) = [g_1(\boldsymbol{p}), \cdots, g_M(\boldsymbol{p})]^\top$$

where $g_m \in V^*$ for $m = 1, \ldots, M$.

DATA :
$$y = \mathcal{G}(p(\cdot; u)) + e, \quad e \sim N(0, \Gamma), \quad e \perp u.$$

The *unnormalized* density of u|y over $u \in E$ is given by

$$\kappa(u) = e^{-\Phi[\mathcal{G}(p(\cdot;u))]}; \quad \Phi(\mathcal{G}) = \frac{1}{2} |\mathcal{G} - y|_{\Gamma}^2.$$

TARGET:
$$\eta(u) = \frac{\kappa(u)}{Z}, \quad Z = \int_E \kappa(u) du.$$

Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Outline						

- 1 Introduction
- 2 Multilevel Monte Carlo sampling
- 3 Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy
- 🕖 Summary

Distributions η_l dictated by an accuracy parameter h_l (here FEM mesh diameter) $\infty > h_0 > h_1 \dots > h_\infty = 0$. Approximate $\mathbb{E}_{\eta_L}[g(U)] = \eta_L(g) = \int_E g(u)\eta_L(u)du$.

Idea: interlace sequential importance resampling (selection) along the hierarchy, and mutation by MCMC kernels.

- Initialize i.i.d. $U_0^i \sim \eta_0, i = 1, ..., N$. For $I \in \{0, ..., L-1\}$:
- Resample $\{\widehat{U}_{l}^{i}\}_{i=1}^{N}$ according to the weights $\{w_{l}^{i}\}_{i=1}^{N}$, $w_{l}^{i} = G_{l}^{i} / \sum_{j=1}^{N} G_{l}^{j}$, $G_{l}^{j} = (\kappa_{l+1} / \kappa_{l})(U_{l}^{i})$.
- Draw $U_{l+1}^i \sim M_{l+1}(\widehat{U}_l^i, \cdot)$, where M_{l+1} is an MCMC kernel such that $\eta_{l+1}M_{l+1} = \eta_{l+1}$.

For $g: E \to \mathbb{R}$, $l \in \{0, \dots, L\}$, we have the following estimators

$$\mathbb{E}_{\eta_l}[g(U)] pprox \eta_l^N(g) := rac{1}{N} \sum_{i=1}^N g(U_l^i) \;.$$

Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Outline						

- Introduction
- 2 Multilevel Monte Carlo sampling
- Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy
- 🕖 Summary

Notice

$$egin{aligned} \mathbb{E}_{\eta_L}[g(U)] &= \mathbb{E}_{\eta_0}[g(U)] + \sum_{l=1}^L \left\{ \mathbb{E}_{\eta_l}[g(U)] - \mathbb{E}_{\eta_{l-1}}[g(U)]
ight\} \ &= \mathbb{E}_{\eta_0}[g(U)] + \sum_{l=1}^L \mathbb{E}_{\eta_{l-1}}\Big[\Big(rac{\kappa_l(U) Z_{l-1}}{\kappa_{l-1}(U) Z_l} - 1 \Big) g(U) \Big]. & \dagger \end{aligned}$$

Idea: Approximate † using SMC sample hierarchy.

Key: Subsample $(U_0^{1:N_0}, \ldots, U_{L-1}^{1:N_{L-1}})$ as in single level SMC, but with $+\infty > N_0 \ge N_1 \cdots \ge N_{L-1} \ge 1$ appropriately chosen.

The MLSMC consistent estimator of $\eta_L(g)$ is given by

$$\widehat{Y} := \eta_0^{N_0}(g) + \sum_{l=1}^L \Big\{ rac{\eta_{l-1}^{N_{l-1}}(gG_{l-1})}{\eta_{l-1}^{N_{l-1}}(G_{l-1})} - \eta_{l-1}^{N_{l-1}}(g) \Big\}.$$

i) the *L* + 1 terms above are *not* unbiased estimates of $\mathbb{E}_{\eta_l}[g(U)] - \mathbb{E}_{\eta_{l-1}}[g(U)]$, so decompose MSE as:

$$egin{aligned} & \mathbb{E}ig[\{\widehat{Y}-\mathbb{E}_{\eta_{\infty}}[g(U)]\}^2ig] \leq \ & 2\,\mathbb{E}ig[\{\widehat{Y}-\mathbb{E}_{\eta_L}[g(U)]\}^2ig]+2\,\{\mathbb{E}_{\eta_L}[g(U)]-\mathbb{E}_{\eta_{\infty}}[g(U)]\}^2\,. \end{aligned}$$

ii) the same L + 1 estimates are *not* independent, so a more complex error analysis will be required to characterize $\mathbb{E}[\{\widehat{Y} - \mathbb{E}_{\eta_L}[g(U)]\}^2].$

・ロット 御マ キョマ キョン

э

(A1) There exist $0 < \underline{C} < \overline{C} < +\infty$ such that

$$\sup_{1 \le l \le L} \sup_{u \in E} G_l(u) \le \overline{C},$$

$$\inf_{1 \le l \le L} \inf_{u \in E} G_l(u) \ge \underline{C}.$$

(A2) There exist a $\rho \in (0, 1)$ such that for any $1 \le p \le L - 1$, $(u, v) \in E^2$, $A \in \sigma(E)$,

$$\int_{\mathcal{A}} M_{\rho}(u, du') \geq \rho \int_{\mathcal{A}} M_{\rho}(v, du').$$

(A3) There is a $\beta > 0$ such that

$$V_l := \|rac{Z_{l-1}}{Z_l} G_{l-1} - 1\|_\infty^2 = \mathcal{O}(h_l^eta) \; .$$

Introduction	MLMC	BIP	SMC	MLSMC	Other 000000000	Summary
Main res	sult					

Theorem (BJLTZ16 – Stoch. Proc. App.)

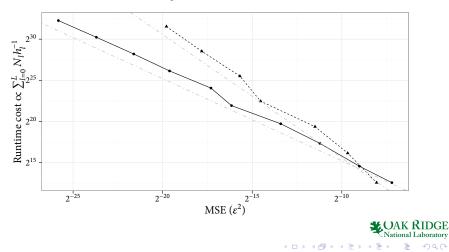
Assume (A1-3). For any $g: E \to \mathbb{R}$ bounded

$$\mathbb{E}\left[\{\widehat{Y} - \mathbb{E}_{\eta_L}[g(U)]\}^2\right] = \frac{V}{2}$$

$$\lesssim \frac{1}{N_0} + \sum_{l=1}^{L} \left(\frac{V_l}{N_l} + \left(\frac{V_l}{N_l}\right)^{1/2} \sum_{q=l+1}^{L} \frac{V_q^{1/2}}{N_q}\right)$$

In particular, for $\beta > \zeta$, L and $\{N_l\}_{l=0}^{L}$ can be chosen such that $MSE = \mathcal{O}(\varepsilon^2)$ for computational cost= $\mathcal{O}(\varepsilon^{-2})$, the optimal case.

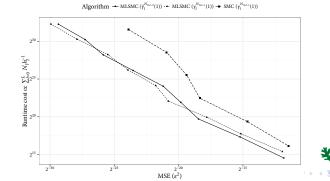
Algorithm - MLSMC - - SMC



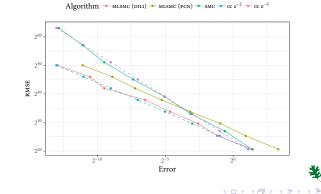
Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Outline						

- Introduction
- 2 Multilevel Monte Carlo sampling
- Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy

- In case g = 1, the original estimator does not make sense.
- Two *unbiased* estimators proposed which provide the optimal rate with a logarithmic penalty on the cost: MSE $\mathcal{O}(\varepsilon^2)$ for cost $\mathcal{O}(|\log \varepsilon|\varepsilon^{-2})$ [DJLZ16 Trans. Mod. Comp. Sim.] Here one can also construct estimators of Rhee&Glynn type.



- Posterior over function-space, levels include refinement in parameter and model
 *η*_l(u_{0:l}).
- Covariance-based LIS (cLIS) introduced and incorporated in DILI proposals [CLM16, BJLMZ17] – substantial reduction in cost.

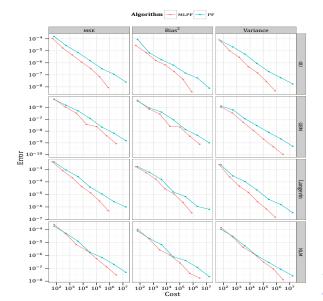


(CA) ML particle filter (MLPF) for SDE

- Filtering involves a sequence of Bayesian inversions, separated by propagation in time (in this case through an SDE).
- Coupled traditional SMC algorithms (particle filters) can be used for each level.
- Mutation M^ℓ is now coupled propagation of a pair of initial conditions through an SDE discretized at two successive mesh-refinements, for ℓ = 0,..., L.
- Selection is performed by novel pairwise coupled resampling which preserves marginals.
- MLMC results carry over with somewhat weaker rate $\beta \rightarrow \beta/2$ [JKLZ15].

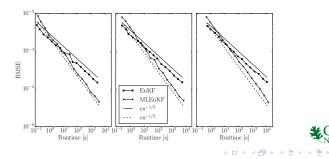
(a)

(CA) MLPF numerical experiments



Introduction MLMC BIP SMC MLSMC Other
occoo Summary (CA) ML ensemble Kalman filter (MLEnKF) for SDE

- EnKF uses sample covariance from an ensemble of particles to approximate a linear Gaussian Bayesian update, given by an affine transformation of particles.
- Multilevel approximation of the covariance improves cost for MSE O(ε²) [HLT16].
 - Best theoretical bound (at step *n*): $\mathcal{O}(|\log \varepsilon|^{2n} \varepsilon^{-2})$.
 - Numerically (uniformly in *n*): $\mathcal{O}(\varepsilon^{-2})$.

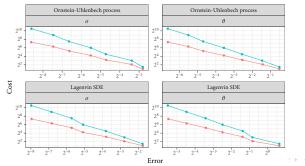


- Aim: estimate E[φ(θ)|y], where y is a finite set of partial observations of the SDE X^θ_t on [0, T], parameterized by θ.
- particle MCMC: Iterate
 - propose $\theta' \sim q(\theta, \theta')$,
 - simulate $\{X^{\theta',i}\}_{i=1}^{M} \approx \pi(X|\theta',y)$ with particle filter,
 - compute non-negative and unbiased estimator $p^{M}(y|\theta') = \prod_{p=1}^{n} (\frac{1}{M} \sum_{i=1}^{M} g_{p}(X_{p}^{\theta',i})),$
 - accept/reject according to

$$1 \wedge rac{ \pmb{p}^{\mathcal{M}}(\pmb{y}| heta') \pi(heta') \pmb{q}(heta', heta)}{ \pmb{p}^{\mathcal{M}}(\pmb{y}| heta) \pi(heta) \pmb{q}(heta, heta')}.$$

- MLMC version [JKLZ16]:
 - Construct approximate coupling π̃_{l,l-1}(θ, X^l, X^{l-1}): usual coupled forward kernel, and coupled selection function G_{p,θ}(X^l, X^{l-1}) = max{g_{p,θ}(X^l), g_{p,θ}(X^{l-1})}.
 Let H_l(θ, X^l, X^{l-1}) = Πⁿ_{p=1} g_{p,θ}(X^l)/G_{p,θ}(X^l, X^{l-1}). Then
 - $\begin{array}{l} \overset{\bullet}{=} \operatorname{Let} H_{l}(\theta, X, X) = \prod_{p=1} g_{p,\theta}(X) / \operatorname{G}_{p,\theta}(X, X). \text{ Then} \\ & \mathbb{E}_{\pi_{l}}[\varphi(\theta)] \mathbb{E}_{\pi_{l-1}}[\varphi(\theta)] = \\ & \frac{\mathbb{E}_{\pi_{l,l-1}}[\varphi(\theta)H_{l}(\theta, X', X^{l-1})]}{\mathbb{E}_{\pi_{l,l-1}}[H_{l}(\theta, X', X^{l-1})]} \frac{\mathbb{E}_{\pi_{l,l-1}}[\varphi(\theta^{l-1})H_{l-1}(\theta, X', X^{l-1})]}{\mathbb{E}_{\pi_{l,l-1}}[H_{l-1}(\theta, X', X^{l-1})]}. \end{array}$
- Optimal results hold with **same** rate as forward.

Algorithm - ML-PMCMC - PMCMC



 If spatio-temporal approximation dimension *d* > 1, then MIMC is preferable to MLMC [HNT15]. *α* ∈ N^d

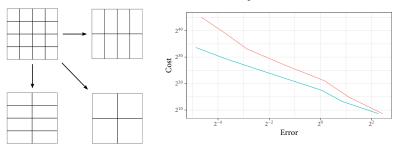
•
$$\Delta_i \mathbb{E}_{\alpha}(\varphi(u)) = \mathbb{E}_{\alpha}(\varphi(u)) - \mathbb{E}_{\alpha - e_i}(\varphi(u)), \Delta = \Delta_d \cdots \Delta_1,$$

$$\mathbb{E}(arphi(u)) = \sum_{lpha} \Delta \mathbb{E}_{lpha}(arphi(u)) pprox \sum_{lpha \in \mathcal{I}} \Delta \mathbb{E}_{lpha}(arphi(u))$$

Approximate coupling can be applied to the 2^d probability measures in each summand.

Introduction	MLMC	BIP	SMC	MLSMC	Other ○○○○○○○●	Summary

• Optimal results hold for appropriate regularity [JKLZ17]



Algorithm — мсмс — мімсмс

ヘロト ヘ回ト ヘヨト ヘヨト

Introduction	MLMC	BIP	SMC	MLSMC	Other 000000000	Summary
Outline						

- Introduction
- 2 Multilevel Monte Carlo sampling
- Bayesian inference problem
- 4 Sequential Monte Carlo samplers
- 5 Multilevel Sequential Monte Carlo (MLSMC) samplers
- Other MLMC algorithms for inference
 - Importance sampling (IS) strategy
 - Coupled algorithm (CA) strategy
 - Approximate coupling (AC) strategy

Introduction	MLMC	BIP	SMC	MLSMC	Other 000000000	Summary
Summar	у					

- MLSMC sampler can perform as well as MLMC.
- For our example β > ζ. If β ≤ ζ, cost is somewhat higher, analogous to standard MLMC.
- If ζ > 2α then the optimal cost is ε^{-ζ/α}, the cost of a single simulation at the finest level.
- New importance sampling: MLSMC with DILI mutations.
- Coupled algorithms: MLPF strong error is effectively reduced by coupled resampling $\beta \rightarrow \beta/2$.
- Coupled algorithms: MLEnKF has a spurious n-dependent logarithmic penalty | log ε|²ⁿ on cost.
- New approximate couplings: ML PMCMC for SDE parameter estimation preserves strong error β.
- New approximate couplings: MIMCMC can perform as well as MIMC; also for *d* = 1 new MLMCMC.
- We are keen to do more applications (on HPC) ! Looking for students/postdocs with similar interests.

- **[BJLTZ15]**: Beskos, Jasra, Law, Tempone, Zhou. "Multilevel Sequential Monte Carlo samplers." SPA 127:5, 1417–1440 (2017).
- **[DJLZ16]**: Del Moral, Jasra, Law, Zhou. "Multilevel Sequential Monte Carlo samplers for normalizing constants." To appear in TOMACS (2017).
- [JKLZ15]: Jasra, Kamatani, Law, Zhou. "Multilevel particle filter." arxiv:1510.04977 (2015).
- [JLZ16]: Jasra, Law, and Zhou. "Forward and Inverse Uncertainty Quantification using Multilevel Monte Carlo Algorithms for an Elliptic Nonlocal Equation." Int. J. Unc. Quant., 6(6), 501–514 (2016)
- [HLT15]: Hoel, Law, Tempone. "Multilevel ensemble Kalman filter." SIAM J. Numer. Anal., 54(3), 1813–1839 (2016).

・ロット (雪) (日) (日)

Introduction	MLMC	BIP	SMC	MLSMC	Other 00000000	Summary
Referen	ces					

- [G08]: Giles. "Multilevel Monte Carlo path simulation." Op. Res., 56, 607-617 (2008).
- **[H00]** Heinrich. "Multilevel Monte Carlo methods." LSSC proceedings (2001).
- **[HNT15]** Haji-Ali, Nobile, Tempone. "MIMC: sparsity meets sampling." Numerische Mathematik, 132, 767-806 (2016).
- [DDJ06]: Del Moral, Doucet, Jasra. "Sequential Monte Carlo samplers." J. R. Statist. Soc. B, 68, 411-436 (2006).
- [C02]: Chopin. "A sequential particle filter method for static models." Biometrika 89:3 539–552 (2002).

A D > A P > A D > A D >

- [D04]: Del Moral. "Feynman-Kac Formulae." Springer: New York (2004).
- [CLM16]: Cui, Law, Marzouk. "DILI MCMC." J. Comp. Phys. 304, 109-137 (2016).

- [CHLNT17] Chernov, Hoel, Law, Nobile, Tempone. "Multilevel ensemble Kalman filtering for spatially extended models." arXiv:1608.08558 (2017).
- [JKLZ17] Jasra, Kamatani, Law, Zhou. "MLMC for static Bayesian parameter estimation." arXiv:1608.08558 (2017).
- [JKLZ17] Jasra, Kamatani, Law, Zhou. "A Multi-Index Markov Chain Monte Carlo Method." arXiv:1704.00117 (2017).
- [JLS17] Jasra, Law, Suciu. "Advanced Multilevel Monte Carlo Methods." arXiv:1704.07272 (2017).
- [BJLMZ17]: Beskos, Jasra, Law, Marzouk, Zhou. "MLSMC samplers with DILI mutations." arXiv:1703.04866 (2017).

Introduction	MLMC	BIP	SMC	MLSMC	Other	Summary

Thank you

